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ABSTRACT 

In an effort to inform Navy leaders of the potential effects of the ever increasing 

demands placed on enlisted sailors and officers, this thesis explores the sleep, 

fatigue, performance, and work schedules of the crew aboard the USS Nimitz 

(CVN-68). This research used actigraphy, self-reported sleep, and survey and 

questionnaire data to determine the amount of sleep that participants received 

and to assess whether differences existed between various groups, departments, 

and watch rotations. The Sleep, Activity, Fatigue, and Task Effectiveness Model-

Fatigue Avoidance Scheduling Tool was used to predict the on-watch 

effectiveness of the participants. This research also sought to determine if the 

Navy standard workweek (NSWW) is an accurate tool for determining manning 

levels on U.S. aircraft carriers. The results showed that sailors and officers 

experienced severe to moderate sleep debt, often stood watch with low predicted 

effectiveness levels, and experienced high levels of daytime sleepiness. This 

study suggests that the NSWW should be updated and supplemented with a 

more robust tool for informing manpower decisions. Key differences in daytime 

sleepiness, diurnal preference, average daily sleep, and on-watch predicted 

effectiveness levels were found between the various groups, departments, and 

watch rotations analyzed in this study. 
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EXECUTIVE SUMMARY 

U.S. Navy sailors and officers are exposed to a myriad of dangers every day, 

both while deployed and in port. Their jobs are inherently dangerous, and this 

danger cannot be avoided. U.S. Navy personnel must perform challenging tasks 

under pressure and with little or no room for error. They are called upon to do 

these tasks day-in and day-out, 24 hours a day, 365 days a year, in some of the 

harshest environments imaginable. Mistakes occur as a result of these high-

stakes and high-risk evolutions, but some of these mistakes could be avoided. 

Due to the requirement of U.S. Navy warships to operate 24 hours a day 

while operationally deployed, the crew performs its duties while operating in a 

shiftwork environment. Even more challenging is when these shifts are 

continually rotating, which causes the crew to sleep at different times each day 

and adapt to a constantly changing schedule. Unfortunately, this rotational work 

routine greatly disrupts enlisted sailors’ and officers’ sleep cycles and circadian 

rhythms. Thus, while performing extremely dangerous and challenging missions 

of tremendous national and global importance, many U.S. Navy sailors and 

officers are doing so in an environment that leaves them clinically and critically 

sleep deprived. The consequences of sleep deprivation and fatigue can be 

disastrous, as demonstrated by the accidents at Chernobyl Reactor 4, Three Mile 

Island Unit 2, Bhopal Union Carbide, and the Exxon Valdez oil spill (Chiles, 

2002). The U.S. Navy is certainly not immune to similar types of incidents.  

Aircraft carriers are considered one of the U.S. Navy’s most important 

assets and are absolutely crucial for meeting U.S. maritime strategic policy 

objectives. The increased operational tempo and duration of deployments for 

aircraft carriers places additional responsibilities and demands upon officers and 

enlisted crewmembers. Furthermore, modern military vessels are becoming more 

technologically advanced while manning levels are being reduced, thus requiring 

sailors to process more information and maintain alertness and vigilance for 
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longer periods of time. Yet, the watch rotations and work schedules still being 

used are those that prevent sailors from operating at or near peak performance. 

Fortunately, the U.S. Navy’s leadership is beginning to recognize that 

forcing sailors and officers to maintain traditional watch rotations and schedules 

that fail to account for human circadian rhythm and sleep patterns is not optimal 

for preserving and strengthening a powerful naval war-fighting force. Thus, steps 

are being taken to realign traditional thinking in regards to sleep, fatigue, and 

schedules throughout the U.S. Navy. In May 2013, the Commander, Naval 

Surface Forces (COMNAVSURFOR) issued a message discussing the revision 

of watch rotation requirements and daily routines in order to maximize the 

effectiveness of watchstanders. COMNAVSURFOR recognized that while the 

Navy invests a tremendous amount of time and effort in maintaining equipment, 

not enough time and effort is invested in “the health, well-being, and safety of our 

sailors” (Commander, Naval Surface Forces [COMNAVSURFOR], 2013, p. 1). 

The COMNAVSURFOR message also discusses the importance of adopting a 

watch rotation that is in-line with the human circadian rhythm, which has been 

widely ignored on operational vessels. Clearly, sleep and fatigue are being taken 

more seriously by U.S. Navy leaders. 

Yet, facilitating the changes in watch rotations and schedules that are 

necessary for maintaining a well-performing naval force cannot be instituted 

without addressing the method by which the U.S. Navy determines required 

manning levels for ships. In order to determine the personnel assigned to each 

class of ship, the Navy designed, and still utilizes, a standardized version of one 

week of activity performed while at sea. This standard week is referred to as the 

Navy standard workweek (NSWW). The NSWW designates 81 hours per week 

for available time or on-duty time and 87 hours per week for non-available time 

(time for sleeping, messing, personal time, etc.) in determining manning for all 

ships. Past studies at the Naval Postgraduate School (NPS) have shown, 

however, that most personnel are sleeping less and working more than set forth 

in the NSWW (Green, 2009; Haynes, 2007; Mason, 2009). Clearly, there is a 
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disconnection between the method for determining manning levels on ships and 

the actual daily requirements placed upon sailors. This disconnect must be 

addressed in order to effectively manage sailors’ work, sleep, and fatigue levels.  

Very limited sleep and fatigue research studies have been conducted on 

aircraft carriers. This thesis statistically analyzed the sleep, fatigue, performance, 

and work schedules of sailors and officers aboard the USS Nimitz (CVN-68) 

through the use of actigraphy data, sleep and activity logs, and the Sleep, 

Activity, Fatigue, and Task Effectiveness Model-Fatigue Avoidance Scheduling 

Tool (SAFTE-FAST) (Institutes for Behavior Resources [IBR] Inc., 2014). It also 

compared the NSWW to the actual daily requirements placed upon sailors and 

officers to assist in determining if the NSWW is an adequate tool for establishing 

aircraft carrier manning levels. 

Results of this research showed that sailors experienced severe to 

moderate sleep debt, often stood watch with low predicted effectiveness levels, 

experienced high levels of daytime sleepiness, and that the NSWW does not 

accurately reflect the daily work schedules of most enlisted sailors and officers 

on U.S. aircraft carriers. Key differences in daytime sleepiness, diurnal 

preference, average daily sleep, and on-watch predicted effectiveness levels 

were found between the various groups, departments, and watch rotations 

analyzed in this study. 

The results of this thesis have potential implications for the U.S. Navy. 

First, watch rotations currently being used result in significant sleep debt and 

poor on-watch performance. Thus, alternative watch rotations that take into 

account the effect of circadian rhythms must be implemented. Second, the 

myriad of tools available to operational units for assessing sleep, fatigue, and 

performance while at sea are underutilized even though the cost to implement 

them would be minimal and pose little burden to personnel. SAFTE-FAST and 

other sleep and fatigue analysis and diagnostic tools such as the Epworth 

Sleepiness Scale (ESS), which is used to measure a person’s daytime 

sleepiness, and the Composite Scale of Morningness (CSM), a method for 
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determining a person’s diurnal preference, should be used in the development of 

watch rotations and work schedules and for identifying potentially sleep deprived 

and overly fatigued individuals. Doing so could help prevent mistakes and 

mishaps that often lead to costly damage and personnel injury. Third, the NSWW 

does not accurately reflect the daily work schedules and demands placed upon 

enlisted sailors and officers. In order to better inform manpower decisions and 

planning, the NSWW must be updated and supplemented with other robust tools, 

such as Improved Performance Research Integration Tool (IMPRINT) Pro, a 

dynamic, stochastic discrete event simulation tool capable of analyzing 

manpower and human-system interaction problems in order to more effectively 

allocate personnel to operational units (Alion Science and Technology, 2014; 

U.S. Army Research Laboratory, Human Research & Engineering Directorate 

[ARLHSRED], 2010). 

The data analyzed in this thesis is observational and not the result of a 

designed experiment. Additionally, the sample of participants in this research 

may not be representative of the entire population of personnel serving on U.S. 

aircraft carriers or in the U.S. Navy. A generalization of the initial findings of this 

study to the entire U.S. Navy or all aircraft carriers should not necessarily be 

made based on the results of this thesis. 

The results of this thesis illustrate a need for additional research in a 

number of areas. Larger studies encompassing multiple naval platforms and 

operational units should be conducted in order to determine the generalizability 

of the ESS, CSM, and SAFTE-FAST results found in this study. Furthermore, 

additional studies are needed in order to validate a maritime version of SAFTE-

FAST. Additional and more detailed studies that collect sleep, work, and other 

activity data of entire ships’ crews must be conducted in order to update the 

NSWW and serve as input into more robust manpower modeling tools, such as 

the IMPRINT Pro Forces Module.  
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I. INTRODUCTION 

A. OVERVIEW 

According to retired Navy Captain Dr. Nick Davenport of the Naval Safety 

Center, “Fatigue is a major factor in many mishaps and can contribute to injury, 

equipment damage, and loss of life” (Davenport, 2013, p. 1). U.S. Navy sailors 

and officers are exposed to a myriad of dangers every day, both while deployed 

and in port. Their jobs are inherently dangerous, and this danger cannot be 

avoided. U.S. Navy personnel must perform challenging tasks under pressure 

and with little or no room for error. They are called upon to do these tasks day-in 

and day-out, 24 hours a day, 365 days a year, in some of the harshest 

environments imaginable. Mistakes occur as a result of these high- stakes and 

high-risk evolutions, but some of these mistakes could be avoided. 

Due to the requirement of U.S. Navy warships to operate 24 hours a day 

while operationally deployed, the crew performs its duties while operating in a 

shiftwork environment. Even more challenging is when these shifts are 

continually rotating, which causes the crew to sleep at different times each day 

and adapt to a constantly changing schedule. Unfortunately, this rotational work 

routine greatly disrupts enlisted sailors’ and officers’ sleep cycles and circadian 

rhythms. Thus, while performing extremely dangerous and challenging missions 

of tremendous national and global importance, many U.S. Navy sailors and 

officers are doing so in an environment that leaves them clinically and critically 

sleep deprived. The consequences of sleep deprivation and fatigue can be 

disastrous, as demonstrated by the accidents at Chernobyl Reactor 4, Three Mile 

Island Unit 2, Bhopal Union Carbide, and the Exxon Valdez oil spill (Chiles, 

2002). The U.S. Navy is certainly not immune to similar types of incidents.  

Aircraft carriers are considered one of the U.S. Navy’s most important 

assets and are absolutely crucial for meeting U.S. maritime strategic policy 

objectives. The increased operational tempo and duration of deployments for 



 2 

aircraft carriers places additional responsibilities and demands upon officers and 

enlisted crewmembers. Furthermore, modern military vessels are becoming more 

technologically advanced while manning levels are being reduced, thus requiring 

sailors to process more information and maintain alertness and vigilance for 

longer periods of time. Yet, the watch rotations and work schedules still being 

used are those that prevent sailors from operating at or near peak performance. 

Fortunately, the U.S. Navy’s leadership is beginning to recognize that 

forcing sailors and officers to maintain traditional watch rotations and schedules 

that fail to account for human circadian rhythm and sleep patterns is not optimal 

for preserving and strengthening a powerful naval war-fighting force. Thus, steps 

are being taken to realign traditional thinking in regards to sleep, fatigue, and 

schedules throughout the U.S. Navy. In May 2013, the Commander, Naval 

Surface Forces (COMNAVSURFOR) issued a message discussing the revision 

of watch rotation requirements and daily routines in order to maximize the 

effectiveness of watchstanders. COMNAVSURFOR recognized that while the 

Navy invests a tremendous amount of time and effort in maintaining equipment, 

not enough time and effort is invested in “the health, well-being, and safety of our 

sailors” (Commander, Naval Surface Forces [COMNAVSURFOR], 2013, p. 1). 

The COMNAVSURFOR message also discusses the importance of adopting a 

watch rotation that is in-line with the human circadian rhythm, which has been 

widely ignored on operational vessels. Clearly, sleep and fatigue are being taken 

more seriously by U.S. Navy leaders. 

Yet, facilitating the changes in watch rotations and schedules that are 

necessary for maintaining a well-performing naval force cannot be instituted 

without addressing the method by which the U.S. Navy determines required 

manning levels for ships. In order to determine the personnel assigned to each 

class of ship, the Navy designed, and still utilizes, a standardized version of one 

week of activity performed while at sea. This standard week is referred to as the 

Navy standard workweek (NSWW). The NSWW designates 81 hours per week 

for available time or on-duty time and 87 hours per week for non-available time 
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(time for sleeping, messing, personal time, etc.) in determining manning for all 

ships. Past studies at the Naval Postgraduate School (NPS) have shown, 

however, that most personnel are sleeping less and working more than set forth 

in the NSWW (Green, 2009; Haynes, 2007; Mason, 2009). Clearly, there is a 

disconnection between the method for determining manning levels on ships and 

the actual daily requirements placed upon sailors. This disconnect must be 

addressed in order to effectively manage sailors’ work, sleep, and fatigue levels.  

Very limited sleep and fatigue research studies have been conducted on 

aircraft carriers. This thesis statistically analyzed the sleep, fatigue, performance, 

and work schedules of sailors and officers aboard the USS Nimitz (CVN-68) 

through the use of actigraphy data, sleep and activity logs, and the Sleep, 

Activity, Fatigue, and Task Effectiveness Model-Fatigue Avoidance Scheduling 

Tool (SAFTE-FAST) (Institutes for Behavior Resources [IBR] Inc., 2014). It also 

compared the NSWW to the actual daily requirements placed upon sailors and 

officers to assist in determining if the NSWW is an adequate tool for establishing 

aircraft carrier manning levels. 

B. BACKGROUND 

This study is the initial investigation of a two-phase study of the sleep, 

fatigue, performance, and work schedules of sailors onboard the aircraft carrier 

USS Nimitz (CVN-68). Crewmembers, Carrier Air Wing 11, and Carrier Strike 

Group 11 of the USS Nimitz departed their homeport nearly three months later 

than scheduled, on 29 March 2013, due to required emergent maintenance on 

elements of its propulsion plant system. During its nearly eight-month-long 

Western Pacific (WESTPAC) deployment, the Nimitz participated in a 

Sustainment Exercise (SUSTEX), joint exercises with the Republic of Korea 

Navy, supported Operation Enduring Freedom (OEF) by launching over 1,400 

combat sorties in the Fifth Fleet area of responsibility (AOR), supported U.S. 

national interests in the Middle East from the Red Sea, transited the Suez Canal, 

and participated in joint exercises in the Mediterranean Sea in the Sixth Fleet 
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AOR. During the period in which this study was conducted (August 26, 2013 to 

September 24, 2013), the ship conducted flight operations while transiting the 

Arabian Sea and transited through the Bab-el-Mandeb Strait into the Red Sea in 

order to support U.S. national interests in the Middle East. 

C. OBJECTIVES 

Limited research has been conducted on the sleep, fatigue, performance, 

and work schedules of sailors’ onboard aircraft carriers. Furthermore, what little 

research that has been conducted is focused on only short periods of abnormal 

operations and on departments other than the reactor department. This thesis 

aims to investigate the sleep, fatigue, performance, and work schedules of 

sailors and officers during normal steaming and flight operations, with an 

emphasis on comparing different groups and departments of the ship, including 

the reactor department. This thesis has the following purposes: 

 Determine the amount and quality of sleep each participant 
received and assess whether differences exist between various 
groups, departments, and watch rotations. Determine if sleep is 
related to demographic and sleep analysis survey data collected 
during the study. 

 Compare participants’ self-reported sleep to actigraphic sleep. 
Examine whether sleep deprivation affects participants’ ability to 
accurately determine how much sleep they received. 

 Determine the amount of time that sailors spent sleeping, working, 
and participating in other activities, as compared to the NSWW, in 
order to assist in determining if the NSWW is an accurate tool for 
determining manning levels on U.S. aircraft carriers. 

 Using FAST, determine the predicted effectiveness of sailors during 
watch periods and other critical times.  

D. SCOPE, LIMITATIONS, AND ASSUMPTIONS 

Data collection for this thesis was limited to 35 enlisted sailors and officers 

aboard the USS Nimitz. A U.S. aircraft carrier was chosen due to the limited 

amount of sleep and fatigue data available for aircraft carriers, in general, and for 

reactor departments specifically. Although data was collected during three 
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overlapping periods, operations were similar enough among the different periods 

to allow the data to be considered as a single data set. Since each watchstander 

is critical to the success or failure of the ship’s mission, an effort was made to 

seek participants from a cross-section of watchstanders from various 

departments and groups. Specifically, the Reactor Department was targeted for 

recruitment due to the limited amount of sleep, fatigue, and performance data 

available for nuclear-qualified personnel on U.S. aircraft carriers. The three main 

departments (groups) recruited were the Deck Department, the Reactor 

Department, and officers. This sample of participants allowed for a comparison 

between diverse groups on different work and watch schedules. Among the 35 

volunteers offering to take part in the study, only 32 participants had complete 

actigraphy data and only 26 had both complete actigraphy and activity and sleep 

log data. The data were collected in a minimally invasive manner to avoid 

interfering with the daily requirements and duties already placed upon the crew. 

Although the use of polysomnography (PSG), a technique used to monitor 

a person’s sleep through the recording of brain waves and other physiological 

factors, is the ideal method for collecting sleep data, due to the operational 

setting of the aircraft carrier, wrist-worn activity monitors (actigraphs) were used 

to collect sleep and activity information for each of the participants. Actigraphy is 

a well-established and accepted means for determining sleep-wake 

discrimination. The concordance rate between actigraphy and PSG has been 

determined to be as high as 95% for detecting sleep (Paquet, Kawinska, & 

Carrier, 2007). Actigraphy monitors, however, are limited in their ability to detect 

waking epochs during sleep. Concordance rates for detecting short awakenings 

while asleep have been assessed to be as low as 34% to 44%. Actigraphy, 

however, is still a very useful tool for assessing sleep and activity of humans, 

especially in field environments (Souza et al., 2007). 

The Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) model (see 

Chapter II, Section I.4), was implemented using a Microsoft Windows program 

called SAFTE-FAST. SAFTE-FAST was used to predict and quantify the 
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cognitive effectiveness of each participant over the period in which they 

participated in the study. Predicted effectiveness of participants while on watch 

was specifically investigated. The strengths and weaknesses of the SAFTE 

model are described in greater detailed in Chapter II, Section I.4.c. 

The study was observational in nature in that it lacked baseline data from 

well-rested conditions for each participant and there was no control group. The 

participants were recruited voluntarily and did not represent a random sample of 

the entire ship’s population. Additionally, since the data were collected on a 

single aircraft carrier over a specific period of time, caution is warranted when 

seeking to generalize the results presented in this thesis to other U.S. Navy 

vessels and operational units. 

E. THESIS ORGANIZATION 

Chapter II reviews the literature on major concepts related to sleep 

deprivation and shiftwork. Chapter III presents the methodology used in the 

thesis. Chapter IV describes the analytical strategy, presents the statistical 

results, and provides a discussion of the results. Finally, Chapter V presents 

conclusions and recommendations for U.S. Navy leadership and future research. 
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II. LITERATURE REVIEW 

A. OVERVIEW 

Today humans live in a 24/7, around-the-clock society. Even though 

working hours, for most people, are decreasing worldwide compared to 100 

years ago, people are increasingly seeking lifestyles that leave little time for rest 

or sleep. The world’s modern and highly competitive, 24/7 economy increases 

the demand for nonstandard, irregular working hours. Forty percent of all 

employed Americans work on schedules other than the traditional 9-to-5 work 

day. Furthermore, 15%–20% of workers in all industrialized nations assume a 

nontraditional work schedule (Haus & Smolensky, 2006), which are highly 

disruptive to sleep and increase the risk of sleep disorders, require individuals to 

work evenings, nights, and/or rotating shifts (Presser, 2003). Some researchers 

suggest that other broad societal changes, such as greater access to television 

and the internet, are contributing factors to increased sleep loss (Monk, 2005). 

Working hours have been on the rise in the United States. U.S. workers 

spend 200–400 hours more per year at work than their counterparts in Germany, 

France, Norway, Sweden, and Denmark (Organization for Economic Cooperation 

and Development [OECD], 2002). This trend of increased working hours is 

readily apparent among some of the most critical professions in our society. The 

National Aeronautics and Space Administration (NASA), for example, places 

intense work-hour demands on its employees, with its “faster-better-cheaper” 

tactic, often leading to 80-hour work weeks (Chiles, 2002, p. 164). Healthcare 

professionals, such as nurses and physicians, face pressure to work long hours 

with little regulation or enforcement of working-hour limits. Regulations that are in 

place remain inadequate. For example, the Boston Police Department places a 

work-hour limit of 96 hours per week on its employees, which still allows for 

almost 14-hour workdays (Johnson & Lipscomb, 2006). 
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Sixty-three percent of Americans report that their sleep needs are not 

being met (National Sleep Foundation [NSF], 2011). Certainly, long and irregular 

working hours are a significant factor affecting the American worker. Human 

cognitive function and neurobehavorial performance are deleteriously impacted 

as a result of sleep loss and function (Lamond & Dawson, 1999). A multitude of 

studies link sustained wakefulness to reductions in human performance in 

regards to decision making, memory, hand-eye coordination, and speed and 

accuracy (Akerstedt, 1988; Belenky et al, 2003; Caruso, 2014; Dawson & Reid, 

2013; Dinges & Kribbs, 1991; Van Dongen, Maislin, Mullington, & Dinges, 2003) 

As a result, humans make errors when they are sleep deprived. Real-world 

tragedies such as Chernobyl Reactor 4, Bhopal, and Three Mile Island Unit 2 can 

all be linked, at least in part, to sleep deprivation (Chiles, 2002). 

If the average American is lacking adequate sleep, certainly one can 

imagine the difficulties that a member of the U.S. Navy faces in regards to getting 

proper rest. The U.S. Navy’s interest in understanding sleep as it pertains to 

human performance has greatly expanded over the last 15 years as a result of 

the increased operational tempo of modern warfare. Today, senior leaders are 

concerned about both the short- and long-term consequences of sleep 

deprivation; however, watchbills, shift-rotations, and schedules that facilitate 

adequate sleep, while at the same time supporting 24-hour operations, are still 

lacking. Thus, achieving adequate sleep continues to be a problem for U.S. Navy 

enlisted sailors and officers. 

This chapter reviews the literature on the fundamentals of sleep, sleep 

deprivation, and human performance. It reviews the literature on sleep 

architecture and circadian rhythms in humans. The effect of shiftwork and shift 

rotations and circadian rhythms is addressed. The chapter also covers the effects 

of sleep deprivation on health and human performance. The fatigue model used 

as the basis for this research is described. Past studies of U.S. Navy aircraft 

carriers are reviewed. Finally, IMPRINT Pro is also described. 
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B. SLEEP 

Humans, like other higher organisms, have a biological requirement for 

sleep in order to sustain life and health—similar to our need to eat and drink. The 

National Sleep Foundation (NSF) recommends that a typical healthy adult 

receive 7 to 9 hours of sleep per day (NSF, 2014c). Table 1 shows the average 

sleep needs for a typical human lifecycle; however, sleep needs vary by 

individual, ranging from 6 to 10 hours (Neri, Dinges, & Rosekind, 1997). Young 

adults and teenagers (the majority of U.S. Navy personnel) need more sleep in 

order to fully recover from physical stressors (Giam, 1997). 

  

Table 1.   Average sleep needs over a typical human life cycle (after NSF, 
2014c). 

Human sleep patterns are controlled by the circadian rhythm that cycles 

roughly once every 24 hours (Colten & Altevogt, 2006). This “biological clock” 

encourages humans to be awake and alert during the day and asleep during the 

night. Several physiological and psychological functions, such as body 

temperature, growth hormones, blood pressure, and alertness, noticeably 

fluctuate throughout a 24-hour cycle (Colten & Altevogt, 2006). As a 

consequence, human performance is degraded at night and in the early morning 

hours. 

Age Sleep Needs (Hours per Day)

Newborns (0-2 months) 12 to 18

Infants (3 to 11 months) 14 to 15

Toddlers (1-3 years) 12 to 14

Preschoolers (3-5 years) 11 to 13

School-age children (5-10 years)10 to 11

Teens (10-17 years) 8.5 to 9.25

Adults 7 to 9
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1. Sleep Architecture 

Within the sleep science community, the structural organization of sleep is 

referred to as “sleep architecture.” During a complete eight-hour sleep episode, a 

typical healthy adult experiences two types of sleep: non-rapid eye movement 

(NREM) sleep and rapid eye movement (REM) sleep. NREM sleep is divided into 

stages 1 through 4, with each stage being a “deeper” form of sleep than the 

previous one (Colten & Altevogt, 2006). REM sleep follows stage 4 of NREM 

sleep; however, individuals will cycle back through the NREM and REM stages of 

sleep several times throughout a night of sleep, as shown in Figure 1 (Colten & 

Altevogt, 2006). The first NREM to REM sleep cycle requires approximately 70 to 

100 minutes to complete, while the later cycles take somewhat longer, lasting 

approximately 90 to 120 minutes (Colten & Altevogt, 2006). 

 

Figure 1.  A typical sleep cycle (from Colten & Altevogt, 2006, p. 34). 

In normal adults, NREM sleep accounts for roughly 75%–80% of the time 

spent asleep, while REM sleep accounts for the remaining 20%–25% (Colten & 

Altevogt, 2006). Each stage of sleep is characterized by changes in brain-wave 

patterns, eye movements, muscle tone, and other physiological and 

psychological changes as described in Table 2 (NSF, 2014a). 
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Table 2.   Description of sleep stages (after NSF, 2014a). 

a. Non-Rapid Eye Movement Sleep  

Non-REM sleep is composed of four stages, each characterized by unique 

brain activity or brain waves, as recorded by an electroencephalographic (EEG) 

(see Figure 2) (Colten & Altevogt, 2006). Stage 1 serves as a transitional phase 

from wakefulness and usually lasts 1–7 minutes in the first sleep cycle of the 

night (Colten & Altevogt, 2006). A person is easily awoken in stage 1 and only 

spends 2%–5% of their total sleep in this stage. Brain activity is characterized by 

rhythmic alpha waves and low-voltage, mixed-frequency waves (Colten & 

Altevogt, 2006). 

Sleep Stage Description 

NREM: 75% of the night As we begin to fall asleep, we enter NREM, which is 

composed of stages 1-4. 

Stage 1 Light sleep; between being awake and entering 

sleep.

Stage 2 Onset of sleep; becoming disengaged with the 

environment; breathing and heart rate are regular 

and body temperature decreases.

Stage 3 & 4 Deepest and most restorative sleep; blood pressure 

drops; breathing slower; energy regained, and 

hormones are released for growth and development.

REM:  25% of the night First occurs about 90 minutes after falling asleep and 

increases over later part of night; necessary for 

providing energy to brain and body; brain is active 

and dreams occur as eyes dart back and forth; body 

becomes immobile and relaxed, muscles shut down; 

breathing and heart rate may become irregular; 

important for daytime performance and may 

contribute to memory consolidation. 
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Figure 2.  Characteristic EEG activity for the four stages of NREM sleep. The 
underlining shows two sleep spindles (from Colten & Altevogt, 2006, 

p. 36). 

In the first sleep cycle of the normal sleep episode, stage 2 sleep is 

roughly 10–25 minutes long (Colten & Altevogt, 2006). During later sleep cycles, 

stage 2 sleep lengthens, eventually accounting for the majority of NREM sleep. 

Low-voltage, mixed-frequency waves make up the majority of brain activity. 

Sleep spindles, thought to be important for the consolidation of memories, 

appear during this stage as well (Colten & Altevogt, 2006). 

Stages 3 and 4 are associated with the deepest and most restorative 

levels of sleep and are jointly referred to as slow-wave sleep (Xie et al., 2013). 

Stage 3 lasts only several minutes, making up for roughly 3%–8% of total sleep 

(Colten & Altevogt, 2006). Stage 4, lasting about 20–40 minutes, accounting for 

10%-15% of sleep (Colten & Altevogt, 2006). An individual requires the most 

intense arousal stimuli in this stage of sleep. Both stages 3 and 4 are 

characterized by high-voltage, slow brain-wave activity (Colten & Altevogt, 2006). 

b. Rapid Eye Movement Sleep 

REM sleep is recognized through the presence of desynchronized,  

low-voltage, mixed-frequency brain-wave activity (Colten & Altevogt, 2006). This 

stage gets its name from the bursts of “rapid eye movements” that accompany it 

(Colten & Altevogt, 2006). During this stage of sleep, brain-wave activity is similar 
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to an awakened state, with “sawtooth” wave forms and slow alpha activity, 

leading some researchers to refer to REM sleep as “paradoxical” sleep (Siegel, 

2000). Most dreaming occurs during this stage as well. Thus, muscle atonia 

serves to prevent individuals from acting out their dreams throughout the night 

(Colten & Altevogt, 2006). 

During his or her first sleep cycle of a sleep episode, an individual obtains 

only 1–5 minutes of REM sleep; however, REM sleep becomes gradually longer 

as the sleep episode continues (Carskadon & Dement, 2005). REM sleep also 

may contribute to memory consolidation (Crick & Mitchison, 1983; Smith & Lapp, 

1991; Stickgold & Walker, 2007). 

2. Sleep Debt 

As a result of shiftwork, transmeridian travel, the use of stimulants, and 

personal sleep choices, people regularly do not get enough sleep. Sleep debt is 

the difference between the minimum amount of sleep that a person requires and 

the amount of sleep that he or she actually obtains (Chapman, 2001). As an 

individual’s sleep debt increases, their mental alertness and performance 

continues to degrade. Only 1–2 hours of sleep loss can significantly reduce 

human performance. Consequently, it is not surprising that every year sleep debt 

leads to injuries, diminished lives, and death (Dement & Vaughn, 2000). 

Sleep debt is incurred and becomes “chronic” when inadequate sleep is 

obtained on a regular basis (Van Dongen, Rogers, & Dinges, 2003). Chronic 

sleep debt can lead to serious physical and mental health issues (Schaefer, 

Williams, & Zee, 2012). A 2002 NSF poll found that the average adult American 

is only sleeping 6.9 hours per day during the week. Thus, a large portion of the 

U.S. population is regularly starting the weekend with at least 5.5 hours of sleep 

debt. The NSF considers sleep debt a rising health concern in the United States 

(NSF, 2002). 

Sleep pressure, or one’s homeostatic sleep drive for sleep as a function of 

the amount of time elapsed since the last adequate sleep episode, builds as 
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cumulative sleep debt increases (Van Dongen, Rogers et al., 2003). Eventually, 

a person’s sleep pressure becomes so great that uncontrolled sleep episodes or 

microsleeps occur (Van Dongen, Rogers et al., 2003). Such episodes can occur 

even while a person is standing up or actively in the middle of a task (McCallum, 

Sanquist, Mitler, & Krueger, 2003). Microsleeps are a serious concern of any 

industry that restricts personnel sleep time such as hospitals, emergency 

response personnel, and especially the military. 

3. Recuperative Sleep 

The only way to recover from a cumulative sleep loss is to extend sleep in 

subsequent nights. Interestingly, a cumulative sleep debt usually cannot be 

replenished in a single night of sleep, as found by Dinges et al. in a 1997 study 

concerning partial sleep deprivation. Many people go into a weekend with the 

assumption that they will “sleep in” in order to replenish the substantial sleep 

debt that they accumulated throughout the workweek (NSF, 2002). Such an 

assumption, however, is faulty in that a large sleep debt may take more than only 

a few nights of extra sleep to fully replenish. As a result, an individual’s sleep 

debt continues to accumulate, eventually becoming “chronic” and possibly 

leading to serious physical and psychological consequences. 

Several studies show that sleep debt is not replenished on an hour-for-

hour basis. Belenky et al. (2003), at the Walter Reed Army Institute of Research 

(WRAIR), showed that three days of recuperative sleep was still not enough to 

recover the performance decrements suffered as a result of sleep deprivation. 

Figure 3 graphically illustrates the substantial recovery time required. 
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Figure 3.  Sleep response (after Belenky et al., 2003, p. 6). 

4. Morningness-Eveningness Sleep Preference 

Dement and Vaughn (2000) discuss morning-evening sleep preference. 

Individuals not only differ in the amount of sleep they need, but also differ in their 

bedtimes and wake-up times. People who prefer to wake up early in the morning 

are called “larks,” or are said to have a propensity toward “morningness.” As a 

result, larks tend to get tired earlier in the evening and have earlier bedtimes. On 

the other hand, “owls,” those individuals having a propensity toward 

“eveningness,” prefer to wake up later in the morning and go to bed later at night. 

An individual who experiences neither of these extremes is referred to as a 

“robin” or a “hummingbird.” “Larks” tend to experience peak alertness in the 

morning, while “owls” are more alert in the evening. Interestingly, the onset of 

adolescence is accompanied by a general eveningness preference that may 

persist until the mid-twenties. Once this period is past, however, individuals tend 

to revert to their normal morningness-eveningness preference and become more 

lark-like (Dement & Vaughn, 2000). 
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C. SLEEP-WAKE REGULATION 

Several factors influence when individuals go to sleep at night and when 

they wake up in the morning. The “two-process model” states that the sleep-

wake system is regulated by these two competing processes; one promoting 

sleep (process S) and one maintaining wakefulness (process C) (Gillette & 

Abbot, 2005). On top of these two processes, an individual’s circadian rhythms 

regulate and assist in synchronizing the sleep-wake system with the external 

day-night cycle (Colten & Altevogt, 2006). A “three-process model” is also used 

to explain sleep-wake regulation; however, it will be explained in a later section 

concerning the various models of human performance and fatigue. The Two-

Process Model is used to explain sleep-wake regulation in this section. 

1. Sleep and Wake Generating Systems 

Process S, the homeostatic pressure for sleep, builds up throughout the 

day and reaches a peak before a person’s bedtime. It subsequently dissipates 

throughout a good night’s sleep (Colten & Altevogt, 2006). This process is 

controlled by neurons that inhibit arousal systems in the brain, thus allowing the 

brain to fall asleep. In fact, loss of these particular neurons causes intense 

insomnia (Colten & Altevogt, 2006). Other areas of the brain assist in controlling 

one’s sleep system. For example, the physical status of one’s body, such as a 

full stomach and emotional cognitive state act as inputs as well (Colten & 

Altevogt, 2006). 

Process C, controlled by the circadian system, helps to maintain the 

sleep-wake system in sync with environmental day-night cycles. This process 

counters process S throughout the day in order to promote alertness during 

daylight hours (Colten & Altevogt, 2006); at bedtime, process C declines, 

allowing for sleep consolidation (the accrual of sleep into a singular episode) 

(Gillette & Abbott, 2005). After a good night’s sleep, process S is dissipated and 

process C increases, which restarts the cycle (Colten & Altevogt, 2006). 
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2. Circadian Rhythms 

Circadian rhythms are daily fluctuations in the physiological and 

psychological functions, as governed by the by the body’s approximately 24-hour 

biological clock. “Circadian,” from the Latin roots circa meaning “about” and dies 

meaning “day,” literally means “about a day” (McCallum et al., 2003). Many daily 

processes and bodily functions, such as mood, alertness, reaction time, muscle 

tone, digestion, respiration, hormone secretion, and body temperature, are 

controlled by an individual’s biological clock. 

The body’s biological clock is located in the suprachiasmatic nucleus 

(SCN), or master-oscillator, of the hypothalamus. SCN cells produce a roughly 

24-hour rhythm, which affects the peripheral oscillators of the central nervous 

system and many bodily functions (Schaefer et al., 2012). The two-process 

model of sleep-wake regulation is formed by the interaction of the SCN and 

circadian rhythms. As sleep pressure builds during the day, SCN neuron activity 

increases, maintaining daytime wakefulness. Eventually, usually in the early 

evening, activity in the SCN peaks and then begins to wane, in order to promote 

sleepiness (Schaefer et al., 2012). 

a. Exogenous Time Cues 

The endogenous biological clock typically runs slightly longer than 24 

hours, requiring daily resynchronization to the 24-hour day. This process, known 

as entrainment, involves the human clock receiving environmental cues, or 

zeitgebers (German for “time givers”) (Winget, DeRoshia, & Holley, 1985). Daily 

changes in light and dark play a central role in synchronization; however, other 

social cues, such as meal times, also act in lining up one’s biological clock with 

the 24-hour day (Winget et al., 1985). Without these exogenous factors, circadian 

rhythms extend to a 25-hour cycle, explaining why many people find it easier to 

stay up later (a phase delay or lengthening of the day) as opposed to going to 

bed earlier (a phase advance or shortening of the day) (Neri et al., 1997). 
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b. Body Temperature 

Daily fluctuation in core body temperature, as shown in Figure 4, has a 

profound influence on human sleep and plays a key role in human circadian 

rhythms. Contrary to popular belief, body temperature varies approximately 0.5 

degrees throughout the day regardless of arousal state (Roehrs, Carskadon, 

Dement, & Roth, 2000). Interestingly, studies have shown that without 

exogenous time cues, body temperature remains a strong governing force 

regulating sleep (Roehrs et al., 2000). Furthermore, a person’s sleep cycle and 

body temperature will often “free run,” or come to a 24-hour period, rather than to 

a 25-hour endogenously determined period (Hockey, 1983). 

 

Figure 4.  Circadian rhythm of alertness, core body temperature, hormone 
secretion, and melatonin (from McCallum et al., 2003, p. 5-3). 
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c. Melatonin 

Secreted by the pineal gland, melatonin assumes an important role in 

managing an individual’s circadian rhythm. Light information, passed from the 

retina of the eye to the SCN, regulates melatonin production. Elevated levels of 

melatonin result in increased sleepiness in humans. Well-timed doses of 

exogenous melatonin assist in causing sleepiness and can be useful in resetting 

an individual’s circadian clock (Baker & Zee, 2000). Melatonin levels fluctuate 

throughout the day, usually reaching a minimum during midmorning and a peak 

between 0300 and 0500 (Czeisler & Khalsa, 2000). These levels make sense, as 

humans are biologically programmed to sleep at night and be awake and alert 

during the day. 

d. Circadian Misalignment 

When individuals attempt to sleep or be awake at times not in agreement 

with their biological clock, a phenomenon known as circadian misalignment 

occurs (Schaefer et al., 2012). Otherwise referred to as an abrupt phase delay or 

advance, such as those encountered when traveling across time zones or 

working shiftwork schedules, this misalignment can have profoundly negative 

short- and long-term effects (Schaefer et al., 2012). Problems such as poor 

sleep, shiftwork disorder (SWD), mistakes at work, and long-term health 

consequences often occur in circadian misalignment (Schaefer et al., 2012). 

D. SHIFTWORK  

A traditional 9-to-5, eight-hour workday is becoming rare in today’s society. 

Nearly 20% of all employed Americans and 15%–20% of workers in all 

industrialized nations work mostly during the evening, night, or on rotating shifts 

(Haus & Smolensky, 2006). Daytime shifts often start as early as 0600 and end 

as late as 1800. Evening shifts often start at 1400 and continue until 2400. Night 

shift schedules may start as early as 2200 and not end until 0800. Sleep 

deprivation is a characteristic observed in all night and rotating shift workers. 

While working during the night or early morning hours, almost 75% of shift 
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workers experience fatigue and sleepiness while at work (Akerstedt, 1988). As a 

result, shiftwork schedules can often adversely impact an individual’s overall 

health, lead to marriage dissatisfaction, and increase accidents in the workplace 

(Johnson & Lipscomb, 2006). 

1. Reasons for Shiftwork 

Shiftwork schedules exist in a multitude of different professions for various 

reasons. The emergency medical community operates on a 24/7 schedule in 

order to provide on-site patient care throughout the night. Firefighters and police 

officers work rotating shift schedules so that personnel are always prepared to 

respond to emergencies and crimes. Naval organizations, with ships at sea, 

adopt the most demanding of all shift schedules in order to support 24-hour-a-

day combat operations throughout the world. 

Presser (2003) argues that the demand for workers willing to adopt 

irregular hours of shiftwork type schedules is increasing. Due to macro-level 

social factors, such as the rise of the service economy, more workers are taking 

jobs that require nonstandard working hours (Presser, 2003). Even though some 

workers prefer a nontraditional schedule, most do not actively pursue shiftwork 

(Rosa & Colligan, 1997). Workers sometimes choose shiftwork for better pay, 

more time for social activities, and because irregular hours, such as the night 

shift, offer quieter working conditions with fewer supervisors. Others simply 

choose shiftwork because it is required and no other employment opportunities 

are available (Rosa & Colligan, 1997). 

2. Circadian Phase Shifting 

Haus and Smolensky (2006) discuss circadian phase shifting. A circadian 

phase shift occurs when a person must adopt a new activity-sleep schedule and 

is no longer governed by the normal, light-dark cycle and social routines. Such a 

schedule, for example, could involve night work, rotating shiftwork, or 

transmeridian travel. A phase shift causes a transient loss of control by the SCN 

due to a desynchronization of the central and peripheral oscillators in the central 
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nervous system. This process is often referred to as circadian misalignment. 

Eventually, after several transient cycles, the SCN and peripheral oscillators will 

adapt to the new irregular schedule, although almost never fully adapting (Haus 

& Smolensky, 2006). 

Phase shifting results in serious short-term consequences. Peak periods 

of physical efficiency are often moved from the late afternoon to night and the 

proclivity to sleep may be low during periods available for rest, while desire to 

sleep is high during times when alertness and mental acuity are required (Haus & 

Smolensky, 2006). Furthermore, while the body is still in a period of temporal 

adaptation, individuals often feel sluggish or groggy, symptoms similar to those of 

jet lag. Workers suffering from such symptoms are more likely to be involved in 

work place accidents (Haus & Smolensky, 2006). Ample evidence exists to prove 

that circadian misalignment is a source of mistakes and severe, on-the-job 

accidents (Schaefer et al., 2012). 

3. Shiftwork Timing 

The timing of a worker’s shift is important because often it forces him or 

her to follow a schedule that is out of phase with normal environmental and social 

cues (Haus & Smolensky, 2006). Thus, a person working late at night or early in 

the morning must constantly fight their circadian clock in order to stay awake and 

alert while on the job. Often, workers feel sleepy and lethargic while working the 

night shift (Rosa & Colligan, 1997). Thus, it is not surprising that, compared to 

the day shift, workers on the evening shift are 15% more at risk for errors and 

incidents, while night shift workers are 28% more at risk (Folkard & Lombardi, 

2006). 

Shift workers are often required to try to sleep at times of the day that are 

not in tune with their biological clock. Specifically, night workers are required to 

sleep during the day, usually in the late afternoon to evening hours (Haus & 

Smolensky, 2006). This timing is in direct conflict with one’s circadian rhythm due 

to several factors. First, SCN activity is near its peak, which promotes 
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wakefulness. Second, melatonin levels in the body are extremely low, also 

promoting alertness. Third, body temperature is also higher than optimally 

required for sleep. All of these factors conspire, making it difficult to obtain an 

adequate amount of quality rest during daylight hours (Haus & Smolensky, 

2006). 

Day workers must often wake up in the early morning hours, sometimes 

as early as 0500 (Rosa & Colligan, 1997). As a result, these workers are often 

forced to cut off their sleep, which leads to daytime fatigue and sleepiness. 

Furthermore, day workers often must go to bed earlier than allowed for by their 

circadian rhythm, further aggravating their sleep schedule (Rosa & Colligan, 

1997). 

4. Shiftwork Schedules 

Rotating and permanent shiftwork schedules and the direction of shift 

rotations are described in this section. 

a. Permanent 

Permanent shift schedules are those in which an individual works only one 

shift: day, evening, or nights (Rosa & Colligan, 1997). Shiftwork-related sleep 

loss and fatigue occur even in permanent night workers. Even after an extended 

period of time (months or years) on this shift, very few night workers display any 

phase adjustment of their circadian clock (Schaefer et al., 2012). Unfortunately, 

most experience no change or a circadian disruption, leading to sleep debt 

(Schaefer et al., 2012). 

Further contributing to difficulties in phase adjustment are social 

influences. Permanent night workers often go back to a normal day-night 

schedule on their days off in order to spend time with family or run errands (Rosa 

& Colligan, 1997). Additionally, night workers not only get less sleep when they 

sleep during the day, but that sleep is of a lower quality as well (Rosa & Colligan,  
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1997). Attempting to sleep during the day is in direct conflict with one’s circadian 

rhythm; therefore, falling asleep and staying asleep is more difficult (Rosa & 

Colligan, 1997). 

b. Rotating 

A rotating shift schedule is one in which an individual switches their shift 

after some given time period. By following this method, an individual rotates to a 

new shift schedule every 3–4 days (rapid rotation) or weekly (intermediate to 

slow rotations) (Haus & Smolensky, 2006). Many 24/7 organizations, such as the 

U.S. Naval Nuclear Power Training Units in Ballston Spa, New York and 

Charleston, South Carolina, adopt rotating shift schedules because they are 

considered more fair since every person on the workforce takes his or her turn 

working each shift. 

Regrettably, this type of schedule allows for little or no phase adaptation. 

Even though most shift workers on rapid rotations can maintain a normal day-

night circadian rhythm, quick rotations are not necessarily optimal for worker 

performance. For example, a night worker, experiencing little or no phase 

adjustment, will not only be fatigued, but his or her physical and cognitive abilities 

will be severely diminished (Haus & Smolensky, 2006). Intermediate or slow 

rotations often lead to a phase alteration but never allow for a phase adaptation. 

This form of rotation can lead to significant disruptions of one’s circadian clock, 

possibly leading to shiftwork intolerance or SWD, a circadian rhythm sleep 

disorder (CRSD) (Haus & Smolensky, 2006). 

c. Rotation Direction 

The direction of shift rotation is an important consideration for phase 

adaptation of shift workers. Direction of rotation refers to the sequence of shift 

variation (Rosa & Colligan, 1997). For example, a forward rotation starts on the 

day shift and continues to the evening and night shifts. This rotation can also be 

thought of as rotating in the clockwise direction. In contrast, a backward shift 

rotation still starts on the day shift, but then progresses to the night and the 
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evening shift. This schedule can be thought of as rotating in the counterclockwise 

direction. Regardless of rotation direction, some amount of circadian 

desynchrony occurs in all shift workers on a rotating schedule because they are 

continuously forced to not only alter their sleep schedule, but must often sleep at 

nonoptimal times of the day-night cycle (Rosa & Colligan, 1997). Consequently, 

sleep is a challenge for rotating shift workers. 

Initially, sleep experts presumed that rapidly advancing 8-hour rotating 

schedules were unfavorable. This theory was mainly due to the slower 

adaptation to a phase advance versus a phase delay as observed in clinical trials 

(Haus & Smolensky, 2006). Recently, however, several studies have found that 

forward-rotating schemes produced positive effects on sleep and shift worker 

health (Hakola & Härmä, 2001; Härmä et al., 2005). Some researchers suggest 

that a forward rotation is better because it forces a worker to go to bed later and 

wake up later following a shift rotation. The human circadian rhythm already 

makes one feel alert and energetic in the early evening, which makes it much 

harder to fall asleep earlier than later. In contrast to forward rotations, backward 

rotating shifts compel a worker to go to bed earlier and earlier after each shift 

change, shortening the length of a day, in direct conflict with one’s circadian 

clock (Rosa & Colligan, 1997). 

5. Sleep Duration 

Studies show that the amount of sleep a shift worker receives is 

influenced by the type of shift schedule they are working. A meta-analysis 

conducted by Pilcher, Lambert, and Huffcutt (2000) of 36 separate studies 

revealed that permanent day workers (shifts that start between 0700 and 0900) 

slept an average of 7.0 hours per day, permanent and rotating evening-shift 

workers (shifts that start between 1400 and 1700) slept 7.6–8.1 hours, 

permanent night-shift workers (shifts that start between 2200 and 2400) slept 6.6 

hours, and rotating night-shift workers slept only 5.9 hours. Clearly, when 

working the night shift, rotating shift workers receive less sleep. Interestingly, 
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permanent evening-shift workers and those currently on the evening shift of a 

rotating schedule received the most sleep, even more so than permanent day 

workers. One possible explanation for this finding could be that the evening shift 

is more in line with the human circadian rhythm; therefore, it is easier to adjust to 

the evening shift, even if it is part of a rotating shift schedule.  

A study conducted by Paley and Tepas (1994) examined firefighters 

working a rotating shift schedule at a northeastern public university. This fire 

station adopted a backward, or counterclockwise, shift rotation consisting of three 

different shifts: night (2400 to 0800), evening (1600 to 2400), and day (0800 to 

1600). Specifically, a shift rotation consisted of two weeks on the night shift, then 

two weeks on the evening shift, and, finally, two weeks on the day shift. The 

study found that the firefighters’ experienced the shortest amount of sleep while 

on the night shift, while there was no significant difference between the day and 

evening shifts. Additionally, firefighters’ sleep length was, on average, longer at 

the beginning of the evening shift, suggesting that they were attempting to 

reduce the sleep debt accumulated during the night shift through recuperative 

sleep (Paley & Tepas, 1994). 

6. Long-Term Health Consequences of Shiftwork 

A myriad of long-term negative health problems are linked to shiftwork. 

One of the main culprits for these negative consequences is chronic sleep loss. 

Other studies show that the problem is more complex than simple sleep debt. For 

example, one study concluded that “circadian stress,” resulting from imbalances 

in psychosocial and physiological functions, results in circadian misalignment 

(Schaefer et al., 2012, p. 491). In 2007, the International Agency for Research of 

Cancer, a unit of the World Health Organization (WHO), identified circadian 

misalignment as a probable carcinogen (Schaefer et al., 2012). Poor health 

behaviors and other diseases and illnesses, such as gastrointestinal problems, 

are specifically associated with shiftwork. SWD is becoming a more widely 

recognized problem among rotating and night shift workers. 
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a. Health Consequences of Sleep Loss 

The past two decades of sleep research have revealed the various long-

term health consequences of sleep loss. Previously only thought to cause 

daytime sleepiness, sleep loss (a night’s sleep shorter than seven hours), is now 

considered a culprit in several serious diseases and ailments (Colten & Altevogt, 

2006). Obesity, diabetes, impaired glucose tolerance, cardiovascular disease 

and hypertension, high blood pressure, musculoskeletal disorders, myocardial 

infarction, cerebral vascular accidents, immune system depression, anxiety 

disorders, depressed mood, and alcohol abuse have all been associated with 

sleep loss (Colten & Altevogt, 2006). Furthermore, the severity of each disease 

increases with increasing sleep loss (Colten & Altevogt, 2006). 

b. Health Consequences of Circadian Misalignment 

Many shift workers suffer from gastrointestinal ailments and moodiness 

(Sack, 2010). Specifically, many complain of abdominal pain, gas, diarrhea, 

constipation, nausea, vomiting, change in appetite, indigestion, and heartburn 

(Caruso, 2014). One major cause of gastrointestinal issues is the circadian 

desynchronization of meal times and the digestion system. Other factors include 

sleep deprivation, which causes stress; immune system dysfunction; and food 

availability while at work (Caruso, 2014). 

Obesity is another serious health consequence of circadian misalignment. 

Research links hormonal imbalances, sympathetic nervous system issues, and 

irregular ghrelin and leptin levels caused by sleep restriction, to increases in 

appetite (Colten & Altevogt, 2006). In fact, research points to a positive 

relationship between obesity and shiftwork (Caruso, 2014). 

Circadian misalignment is linked to cancer. Several studies have 

concluded that a connection exists between shiftwork-induced circadian 

misalignment and cancer. The 2007 WHO study concluded that data from human 

studies support a possible link. In 2005, a meta-analysis of 13 studies concluded 

that night work increased cancer risk by 48% (Caruso, 2014). Two of three 
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studies discovered an increase in prostate cancer among shift workers. 

Additionally, breast and colorectal cancers are also more prevalent among shift 

workers than among the general public (Schaefer et al., 2012). Regular shifting 

of sleep and work; immune system depression; and regular exposure to light at 

night, causing low melatonin levels, are all possible mechanisms that increase 

shift workers’ risk of cancer (Caruso, 2014). 

Some chronic diseases are exacerbated by shiftwork. Specifically, a 

person diagnosed with one of the following diseases could experience worsening 

symptoms if he or she assumes a shiftwork schedule: heart disease, high blood 

pressure, stomach and intestinal disorders, sleep disorders, insulin-dependent 

diabetes, seizure disorders, asthma requiring medication, psychiatric disorders, 

and alcohol and drug abuse (Colten & Altevogt, 2006). Shiftwork is also linked to 

adverse female reproductive health. In 2003, Frazier and Grainger found that 

shiftwork resulted in increases in spontaneous abortion, preterm birth, and 

reduced fertility in women. 

c. Shiftwork Disorder  

SWD is one of many CRSDs. In fact, 10%–25% of rotating and night shift 

workers are diagnosed with SWD (Drake, Roehrs, Richardson, Walsh, & Roth, 

2004). Symptoms include severe and chronic sleepiness, impaired performance 

during work hours, and poor sleep during the day (Schaefer et al., 2012). 

Individuals with SWD usually suffer from stomach ulcers, higher rates of 

depression, and a larger number of fatigue-related accidents for compared to 

other shift workers. SWD is most prevalent among night shift workers, but 

workers who begin a shift between 0400 and 0700 are also susceptible. Social 

and genetic factors also influence one’s vulnerability to SWD (Schaefer et al., 

2012). 

SWD can be difficult to diagnose. The diagnostic criteria, as set forth by 

the International Classification of Sleep Disorders-2 (ICSD-2), are: 
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 Symptoms of insomnia that are associated with a work schedule 
that overlaps the usual time for sleep. 

 Symptoms are directly associated with a shiftwork schedule over 
the course of at least one month. 

 Sleep log monitoring for at least seven days demonstrates 
circadian and sleep-time misalignment. 

 Sleep disturbance cannot be explained by another sleep disorder or 
by medical, neurological, or mental disorder; medication use; or 
substance-use disorder. (American Academy of Sleep Medicine, 
2005) 

d. Poor Health Behaviors 

Long work hours and shiftwork are linked to poor personal health habits. 

Bushnell, Colombi, Caruso, and Tak (2010) reported that a 12-hour shift rotation, 

determined to be detrimental to a person’s health, was linked to high rates of 

smoking, obesity, low physical activity, and increased alcohol use. Smoking rates 

are generally higher among shift workers because nicotine serves as a 

countermeasure for fatigue and stress induced by their harsh schedules (Caruso, 

2014). Finally, the consequences of shiftwork and long work hours, such as poor-

quality sleep and reduced sleep length, often lead to obesity through hormonal 

and metabolic imbalances (Caruso, 2014). 

E. PERFORMANCE DECREMENTS CAUSED BY FATIGUE AND SLEEP 
DEPRIVATION 

Many studies have examined the deleterious effects of both partial and 

total sleep deprivation on human performance. Of particular concern for the U.S. 

Navy is partial sleep deprivation. Sailors regularly face operating multibillion 

dollar equipment, while suffering from reduced cognitive and physical 

performance as a result of being chronically and acutely sleep-deprived. 

1. Total Sleep Deprivation 

Total sleep deprivation results from a period of sustained wakefulness. 

The mental effects of complete sleep loss are substantial. In 1965, 17 year-old 

Randy Gardner purposely stayed awake for 264 hours (or about 11 days) for a 
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high school science project. He experienced significant deficits in concentration, 

motivation, perception, and higher mental processes (Tewari, Soliz, Billota, Garg, 

& Singh, 2011). Navy Lieutenant Commander (LCDR) John J. Ross of the U.S. 

Navy Medical Neuropsychiatric Research Unit in San Diego monitored Randy’s 

condition throughout the experiment. He provided detailed documentation of 

Gardner’s mental and physical condition on a daily basis. Ross reported that 

Gardner experienced memory loss, slurred speech, episodes of fragmented 

thinking, irritability, hallucinations, and paranoia at different times throughout the 

11-day period (Ross, 1965). Gardner only recovered to his normal, 

preexperiment cognitive ability after several nights of normal sleep (Tewari, Soliz, 

Billota, Garg, & Singh, 2011). 

A study at the University of Chicago conducted by Rechtschaffen and 

Bergman (2002) found that after five days of sustained wakefulness, rats actually 

die. Before the point of death, the sleepless rats displayed debilitated 

appearance such as ungroomed fur and various skin lesions, severe motor skill 

impairment, and substantially reduced brain activity (Rechtshaffen & Bergman, 

2002). The symptoms described by Gardner in Ross’s study are serious, even 

though they are only qualitative in nature. 

A useful method for quantifying the performance impairment associated 

with total sleep deprivation is relating fatigue to alcohol-induced impairment. 

Lamond and Dawson (1999) sought to quantify the effects of sleep deprivation 

using this approach. They hoped to improve policymakers’ and the general 

public’s understanding of the performance decrements caused by sleep loss. 

Their study concluded that moderate levels of fatigue result in reductions in 

performance equivalent to or greater than those observed at levels of intoxication 

unacceptable when driving and/or operating heavy equipment. This general 

conclusion confirmed Dawson and Reid’s (1997) earlier findings regarding sleep 

loss and alcohol intoxication. Furthermore, the 1999 Lamond and Dawson study 

systematically compared the effects of fatigue and alcohol intoxication in a 

quantifiable and scientifically repeatable experiment. 
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Lamond and Dawson’s 1999 study also found that specific components of 

performance vary in their degree of sensitivity to sleep deprivation. Complex 

tasks were found to be generally more susceptible to sleep loss than simpler 

performance tasks. In addition, vigilance performance decreased as sleep loss 

increased (Lamond & Dawson, 1999). The extremely monotonous nature of 

vigilance tasks provides one explanation of perhaps why it was more sensitive to 

fatigue. Of note, Dinges, Whitehouse, Orne, and Orne (1988) found that tasks 

lacking complexity (such as simple reaction time tests) are affected early and 

intensely by sleep deprivation. This further suggests that monotony can increase 

performance decrements as a result of continued wakefulness (Lamond & 

Dawson, 1999). Clearly, mood, performance, and alertness are all negatively 

affected by total sleep loss. 

2. Partial Sleep Deprivation 

A multitude of studies show that the effects of partial sleep restriction 

seem to be cumulative in that as sleep loss continues to increase, performance 

and mood progressively deteriorate. Dinges and colleagues (1997) conducted an 

experiment involving the sleep restriction of 16 healthy, young adults. For seven 

consecutive nights, the participants’ sleep was restricted to only five hours. The 

study concluded that the consecutive nights of restricted sleep negatively 

affected neurobehavorial markers of alertness; in particular, measures of 

sleepiness, fatigue, mood disturbance, stress, and lapses in psychomotor 

vigilance task (PVT) (Dinges et al., 1997). PVT is a method used to measure a 

subject’s reaction time to visual stimulus. Research has linked lapses in PVT 

response and false responses to increased sleep debt in humans. Of note, 

scores on every performance and mood measure that were shown to be 

sensitive to sleep restriction progressively deteriorated during the final day, but 

only after initially increasing after the second day of sleep restriction. On the 

other hand, subjective sleepiness and fatigue immediately and substantially 

increased (Dinges et al., 1997). 
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Interestingly, Dinges et al. (1997) found that the effects of cumulative 

sleep loss seemed to level off between the second and fifth days of the 

experiment for subjective sleepiness and between the second and sixth days for 

the PVT performance, as shown in Figure 5 and Figure 6. Perhaps such a 

leveling off suggests some amount of “adaptation to sleep restriction” (Dinges et 

al., 1997, p. 274). Recovery from the seven days of partial sleep deprivation took 

at least two nights of recovery sleep (Dinges et al., 1997). 

 

Figure 5.  Temporal profile of mean PVT lapses after two baseline nights (from 
Dinges et al., 1997, p. 273). 
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Figure 6.  Temporal profile of mean PVT duration of slowest 10% response 
time (RT) responses in the lapse domain (from Dinges et al., 1997, p. 

273). 

Dinges’ findings are consistent with the finding of a study conducted by 

Belenky et al. (2003) at WRAIR. The study at WRAIR found that PVT response 

speed  1
RT

 seemed to level-off in the middle three days of a seven-day study 

for sleep restricted to five hours per night, as shown in Figure 6. Results showed, 

however, that PVT speed dramatically worsened as a result of sleeping only 

three hours per night. In fact, by the seventh night, PVT response speed dropped 

to nearly only 50% of baseline PVT speed (Belenky et al., 2003).  

A similar study conducted by Hans Van Dongen et al. (2003) found that 

chronic restriction of sleep periods to four or six hours per night over 14 

consecutive days resulted in significant cumulative, dose-dependent deficits in 

cognitive performance on all tasks. Interestingly, only the subjects in the group 

receiving four hours of sleep reported that they felt sleepy. This result highlights 

the concern that sleep deprived people often are not aware of their own 

deteriorating performance. (Van Dongen et al., 2003). Clearly, cognitive 

performance is reduced as a result of partial sleep deprivation. 
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F. FATIGUE COUNTERMEASURES: PREVENTION OF SLEEP-INDUCED 
PERFORMANCE IMPAIRMENT 

Many techniques and substances exist to counteract fatigue and promote 

alertness and human performance. Some techniques include napping and bright 

light exposure. Common substances used for fatigue countermeasures include 

caffeine, melatonin, and hypnotic drugs. 

1. Napping 

Napping is used as a tool to improve human performance and efficiency. 

The time of day and the length of a nap are important factors in considering the 

usefulness and recuperative benefit of a nap (Naitoh, Tamsin, & Babkoff, 1991). 

Sleep inertia, the period after an individual awakens when he or she feels 

drowsy, confused, and/or unmotivated, is a serious concern when considering 

the utility of naps (Naitoh et al., 1991). 

Napping prior to or during shiftwork, especially night work, improves 

alertness (Purnell, Feyer, & Herbison, 2002). Studies show that naps of 20–50 

minutes, executed in the early portion of a night shift, improve reaction time and 

alertness (Purnell et al., 2002). In order to avoid sleep inertia, while also 

receiving some recuperative benefits, naps should not exceed 50 minutes and be 

no shorter than 10–15 minutes (Purnell et al., 2002). Additionally, a laboratory 

experiment conducted by Schweitzer, Randazzo, Stone, Erman, and Walsh 

(2006) simulating four nights of shiftwork concluded that napping improved both 

performance and alertness. 

Over a period of several years during the late 1980s and early 1990s, 

researchers at NASA-Ames Research Center conducted a multidisciplinary study 

of fatigue on transmeridian flight crews (Dinges et al., 1991). The goal of the 

study was to assist in combating inadequate sleep as a major source of fatigue 

for long-haul flight crews (Graeber, Lauber, Connell, & Gander, 1986; Rosekind, 

Connell, Dinges, Rountree, & Graeber, 1991). The experiment involved rotating 

crew members through 40-minute naps while in-flight. The findings indicated that 
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although the naps failed to eliminate the cumulative sleep debt of the crew 

members, they improved crew alertness during flight and provided temporary 

relief from fatigue while in flight. The benefits were most apparent during night 

flights (Rosekind et al., 1994). 

Sleep inertia hinders performance following naps. Naitoh et al. (1991) 

found that inferior logical reasoning remained for a 6-minute period following a 

20-minute nap. Additionally, this study found that sleep inertia worsened as the 

amount of sleep debt increased, but that sleep inertia severity was not dependent 

upon the time of day (Naitoh et al., 1991). Thus, the severity of sleep inertia 

following naps did not change based on the time of day. Rather, the study 

discovered that the severity of sleep inertia depended on the stage of sleep from 

which the test subject was awakened (Naitoh et al., 1991). Furthermore, a study 

conducted by Dinges and Kribbs (1991) showed that there is a significant 

reduction in cognitive task performance during periods of sleep inertia. 

2. Melatonin 

The use of exogenous melatonin for improving circadian adaptation and 

treating CRSDs shows mixed results (Schaefer et al., 2012). Several studies 

point to the effectiveness of melatonin as a sleep aid. First, melatonin 

administered at certain desired times of the day can be helpful in accelerating a 

phase delay or phase advance. Second, when taken following a night of work, 

melatonin improves an individual’s duration and quality of sleep (Schaefer et al., 

2012). Using melatonin before daytime sleep to enhance night work alertness, 

however, has not been shown to be of significant benefit (Sharkey, Fogg, & 

Eastman, 2001). 

3. Caffeine and Other Wake-Promoting Drugs 

A multitude of studies exist demonstrating the effects of caffeine on 

reducing sleepiness, improving alertness, and enhancing cognitive ability 

(Schaefer et al., 2012). In one four-night laboratory study simulating night 

shiftwork, Schweitzer and colleagues (2006) found that caffeine improved both 



 35 

alertness and performance. Modafinil, armodafinil, and other wake-promoting 

drugs, are actively prescribed by the medical community to treat SWD (Czeisler, 

Walsh, Wesnes, Arora, & Roth, 2009). Taken 30–60 minutes before the start of a 

night shift, these drugs have been shown to enhance performance and reduce 

sleepiness (Czeisler, Walsh, Roth, et al., 2009). 

4. Bright Light Exposure 

Bright light exposure and concealment can improve circadian alignment, 

mood, and performance. A study conducted by Cajochen, Zeitler, Czeisler, and 

Dijk (2000) demonstrated that light exposure of 2,500–10,000 lux during the night 

shift greatly enhances alertness and performance; however, this enhancement 

does not reach daytime levels of alertness. Another study showed that circadian 

adjustments are improved for groups exposed to bright lighting while working at 

night and kept in darkness during the morning following night work (Eastman, 

Stewart, Mahoney, Liu, & Fogg, 1994). In his master’s thesis at the Naval 

Postgraduate School, Lieutenant (LT) John Nguyen found that sailors working 

topside (i.e., exposed to sunlight) received less sleep and their sleep was more 

fragmented than personnel working below decks (i.e., not exposed to sunlight). 

One explanation he proposed for this difference was light exposure restricting the 

release of melatonin prior to sleep (Nguyen, 2002). 

G. MISHAPS CAUSED BY FATIGUE 

This section aims to highlight three catastrophic disasters that occurred as 

a result of sleep deprivation: Chernobyl Reactor 4, Exxon Valdez, and Three Mile 

Island Unit 2. All three of these incidents happened during the night shift when 

people are more likely to feel fatigued and are at their circadian nadir. Thus, as a 

result of reduced cognitive ability, personnel in key positions made poor 

decisions, ultimately leading to tremendous public safety hazards and 

environmental damage. 
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1. Chernobyl Reactor 4 

Chiles (2002) describes the accident at Chernobyl Reactor 4. Shortly after 

midnight on April 26, 1986, the V. I. Lenin Chernobyl Power Station Reactor 4, 

located on the Pripyat River 80 miles north of Kiev, Ukraine, suffered several 

massive explosions and a meltdown of its radioactive core. As the crew shut 

down the reactor that night in preparation for an annual maintenance period, they 

attempted to carry out a complex experiment. As the reactor was being shut 

down, their goal was to test the plant’s ability to provide electrical power long 

enough to allow diesel generators to pick up the electrical loads. Unfortunately, in 

order to conduct this test, multiple automatic safety shutdown systems were 

disabled, thereby violating safety rules. These procedural violations allowed the 

reactor to operate in a condition for which it was not designed. Furthermore, the 

operators did not account for the intrinsic power that remained in the reactor as a 

result of operating continuously for the previous year. Thus, the experiment 

became increasingly difficult to continue, finally leading operators to panic and 

insert the control rods in an attempt to shut down the reactor. Regrettably, the 

graphite-tipped control rods stuck, causing the reactor’s power to spike. 

Consequently, the water in the reactor turned to steam, causing a massive 

explosion in the containment facility. A subsequent explosion involved the 

melting reactor core itself. The explosions and melting core released two 

hundred times the amount of radioactivity into the atmosphere as the two atomic 

bombs dropped on Japan during World War II (Chiles, 2002). 

2. Exxon Valdez 

Skinner and Reilly (1989) describe the Exxon Valdez oil spill. Four 

minutes after midnight on Good Friday morning, March 24, 1989, the Exxon 

Valdez, a two-year old, single-skin, oil tank ship, ran aground on Bligh Reef in 

Prince William Sound, Alaska. During the days leading up to the accident, the 

ship’s crew was routinely working 14-hour days, causing severe fatigue. The third 

mate, in particular, faced an excessive workload and suffered from severe sleep 



 37 

debt as a result. Furthermore, Captain Hazelwood, in command of the Exxon 

Valdez, was intoxicated at the time of the mishap. While navigating the Prince 

William shipping lanes, the ship encountered chunks of floating ice. The Captain 

adjusted the ship’s course accordingly and notified the U.S. Coast Guard Vessel 

Traffic Service (VTS) that the ship was going to exit the outbound traffic lane in 

order to so. Following this, the Captain ordered the weary Third Mate to turn the 

ship back into the outbound lane when abeam of Busby Island. He then exited 

the bridge, even though the turn was less than two minutes away. The Third 

Mate ordered the turn; however, the ship did not initially turn, but continued 

through the separation zone and the inbound traffic lane, eventually exiting the 

shipping lanes altogether. Unfortunately, the Third Mate did not notice that the 

ship failed to turn upon his order and went to the chart room to plot the turn. As a 

result, shortly after midnight, near the circadian nadir of the already exhausted 

Third Mate, the Exxon Valdez ran aground on Bligh Reef, spilling 258,000 barrels 

of crude oil in Prince William Sound, resulting in catastrophic environmental 

damage. The National Transportation Safety Board (1990) estimated that the 

cleanup during 1989 cost $1.85 billion (Skinner & Reilly, 1989) 

3. Three Mile Island Unit 2 

Chiles (2002) describes the accident at Three Mile Island Unit 2. In the 

early morning of March 28, 1979, the reactor core of Three Mile Island Power 

Plant Unit 2, near Harrisburg, Pennsylvania, came within 30 minutes of 

meltdown. The incident cost General Public Utilities and the U.S. government 

more than $4 billion, the nation’s most expensive industrial disaster at the time. A 

night (2300–0700) maintenance crew was attempting to clean a large water filter 

in the reactor coolant system; a routine operation. During this particular time, 

however, a few ounces of water escaped into the compressed air lines. 

Ultimately, this leak caused the automatic controls to shut valves that let coolant 

through. Shutting the valves caused a pipe to be torn loose, spraying high-

temperature water throughout the controls in the turbine room. This event, 

however, was only the beginning of the problem (Chiles, 2002). 



 38 

The reactor automatically shut down because heat could no longer be 

removed due to the shutting of the coolant valves (Chiles, 2002). This automatic 

action drastically reduced heat production in the core; however, temperature and 

pressure continued to rise as the water expanded. Nonetheless, the reactor 

system continued to operate as designed. The water expanded into the only 

place it could go, the pressurizer tank. Once the pressure increased too much, 

the pilot-operated relief valve (PORV) opened as designed to reduce pressure in 

the reactor coolant system by releasing steam to the containment building. When 

pressure stabilized within a few seconds, the PORV received the electronic 

signal to shut. Unfortunately, the PORV became stuck in the open position. In the 

control room, the proper indications for the PORV receiving the signal to both 

open and shut were observed by the operators. The operators, however, falsely 

interpreted the indication that the PORV had received the signal to shut as the 

valve actually shutting. The electronic command to shut had been sent to the 

valve, but the valve malfunctioned and remained stuck in the open position. The 

indication in the control room was that it operated as intended, although the 

PORV did not. For the next two hours, operators failed to notice that the PORV 

was stuck open due to lack of indications in the control room and a lack of 

knowledge regarding this specific casualty. They continued to follow procedure, 

but pressure continued to drop while the water level in the pressurizer continued 

to rise (Chiles, 2002). 

At 0600, a well-rested supervisor arrived and, within 15 minutes, had 

developed two theories for the current problem (Chiles, 2002). His first theory 

was that a blown circuit breaker disabled electric heaters in the pressurizer. His 

second theory was that a small leak existed in the reactor coolant system. He 

investigated the leak, while another worker looked into the potential blown 

breaker. After verifying multiple control room indicators, the more alert operator 

shut an isolation valve leading to the stuck open PORV. As a result, pressure 

began to rise and the water level stabilized, avoiding a complete meltdown 

(Chiles, 2002). 
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H. SLEEP AND FATIGUE ANALYSIS QUESTIONNAIRES 

The sleep analysis questionnaires described in this section are the 

Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), and the 

Composite Scale of Morningness (CSM). Each is a self-administered 

questionnaire that can be completed on paper or electronically. The three 

questionnaires are validated and accepted throughout the sleep and fatigue 

community. See Appendices C, D, and E for copies of the PSQI, ESS, and CSM, 

respectively. 

1. Pittsburgh Sleep Quality Index  

The PSQI, developed in the late 1980s, is a validated, self-rated 

questionnaire that evaluates sleep quality and disturbances over a one-month 

period of time (Buysse, Reynolds, Monk, Berman, & Kupfer, 1989a). The 

questionnaire consists of 19 individual items that are combined to produce seven 

component scores. The seven component scores are: subjective sleep quality, 

sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use 

of sleeping medication, and daytime dysfunction. The sum of the seven 

component scores yields a global score. Based on the global score, individuals 

are classified as either having “good” sleep quality or “poor” sleep quality. The 

PSQI takes 5–10 minutes for a subject to complete and five minutes to score, 

and is available in 57 different languages (Buysse et al., 1989a). 

According to Buysse et al. (1989a), the PSQI is a useful tool for 

determining sleep quality. First, it offers a reliable, validated, and standardized 

measure of sleep quality. Second, the PSQI distinguishes between “good” and 

“bad” sleepers. Third, it provides an index that is simple enough for subjects to fill 

out, yet robust enough to provide clinicians and researchers with useful data. 

Fourth, PSQI delivers a brief, but useful, evaluation of a multitude of sleep 

disturbances that may affect sleep quality. Finally, the only limitation of the PSQI 

is that, as a self-rated and subjective means of determining sleep quality, 
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possible inaccuracies are introduced due to erroneous information being 

provided by subjects (Buysse et al., 1989a). 

The questions that make up the PSQI came from three sources: clinical 

intuition and experience, a review of previous sleep quality questionnaires, and 

an 18-month-long field testing period (Buysse et al., 1989a). The 19 self-rated 

questions assess a variety of factors affecting sleep quality. Specifically, 

estimates of sleep duration and latency, as well as the frequency and severity of 

specific sleep-related problems, are evaluated. The 19 individual items, each 

weighted equally from 0 to 3, are assembled into seven component scores. Then 

the sum of the seven component scores yields a global PSQI score. This score 

can range from 0 to 21. Higher scores designate worse quality sleep (Buysse et 

al., 1989a). 

2. Epworth Sleepiness Scale 

The ESS is a validated, self-administered questionnaire developed by Dr. 

Murray Johns (1991a) that provides a measurement of an individual’s overall 

daytime sleepiness. The ESS consists of eight questions scored on a four-point 

(0 to 3) scale. The total ESS score is the sum of the scores from the eight 

questions, with a possible range of 0 to 24. Higher scores represent a higher 

level of daytime sleepiness. The questions ask the subject to rate their usual 

chance of dozing off or falling asleep in eight different, but routine, activities that 

most people participate in as a part of daily life. The ESS takes approximately 2–

3 minutes to complete (Johns, 1991a). 

The specific questions that comprise the ESS were chosen a priori by Dr. 

Johns (1991a), based on their somnificity. In other words, the questions were 

chosen based on the capacity of an activity to facilitate sleep-onset in a majority 

of subjects based on posture, activity, and situation. Individuals are much more 

likely to doze off while engaged in activities of high somnificity (e.g., Item 5 of the 

ESS is “lying down to rest in the afternoon when circumstances permit”) than 

while participating in activities of low somnificity (e.g., Item 6 of the ESS is “sitting 
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and talking to someone”). Therefore, a higher ESS score indicates a higher 

average sleep propensity, thus signifying a higher chance of falling asleep during 

activities of low somnificity. ESS scores greater than 10 are classified as 

abnormal, while scores less than or equal to 10 are classified as normal (Johns, 

1991a). 

According to Johns (1991a), the ESS is a useful tool for determining 

individuals’ daytime sleepiness levels. First, the test, consisting of only eight 

rather easy-to-answer questions, is simple and only requires minutes to 

complete. Second, the ESS score provides a measure of a subject’s average 

sleep propensity (ASP), for which there is no other objectively accepted “gold 

standard” for doing so. Third, ESS scores are reliable in regards to retesting 

subjects over a period of several months. Fourth, the ESS serves as an indicator 

of possible sleep-related problems such as sleep disorders or sleep deprivation 

(Johns, 1991a). 

According to Johns (1991a), the ESS has several limitations. First, the 

questions require subjects to retrospectively and subjectively assess their own 

likelihood of dozing off while engaging in different activities. This process 

introduces inaccuracies into the data due to the possibility of subjects 

erroneously answering the questions. Second, it is not suitable for measuring 

rapid alterations in sleep propensity over a short period of time (i.e., hours). 

Third, ESS does not provide any diagnostic capability, in that it can only be used 

as a tool for indicating possible problems with a person’s sleep-wake cycle. 

Fourth, ESS scores do not correlate very closely to their mean sleep latency as 

determined by the Multiple Sleep Latency Test (MSLT), the most widely accepted 

measurement of sleepiness (Johns, 1991a). 

Based on the results of a study conducted on a deployed U.S. Navy 

destroyer, Shattuck and Matsangas (2014) have shown that the ESS possesses 

utility in predicting PVT performance for naval personnel in an operational 

setting. Participants wore wrist activity monitors, completed sleep and activity 

logs over an 11-day period, and completed the ESS immediately preceding the 
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data collection period. PVTs were administered throughout the data collection 

period. The study determined that within the population studied, the ESS 

classification seems to be an effective tool for identifying individuals that may be 

at risk for degraded PVT in operational settings (Shattuck & Matsangas, 2014). 

3. Composite Scale of Morningness  

The CSM is a widely used and accepted measure of behavioral temporal 

predilection. With validated versions existing in four languages (English, French, 

Thai, and Italian), the CSM is currently the best subjective method for 

determining individuals’ chronotype. The three types currently accepted within 

the literature are referred to as morning (larks), intermediate (robins), and 

evening (owls). 

The CSM was developed in 1989 by Smith, Reilly, and Midkiff. Their 

original intent was to develop a better tool for selecting the most suitable 

personnel for shiftwork (Smith et al., 1989). The scales previously created 

possessed questionable psychomotor properties and were either too long or too 

short. Thus, Smith et al. (1989) used the best combination of questions from the 

Morningness-Eveningness Questionnaire (MEQ) and the Diurnal-Type Scale 

(DTS) created in 1976 and 1980, respectively. The CSM, consisting of 13 items, 

has since been validated and its reliability verified through follow-on studies 

(Morales & Sanchez-Lopez, 2004). CSM scores can range between 10 and 56. 

The score ranges for evening, intermediate, and morning types are 10–22, 23–

43, and 44–56, respectively.  

I. MODELS OF HUMAN PERFORMANCE AND FATIGUE 

This section provides brief descriptions of several models of human 

performance, sleep, and fatigue. Each model was developed for different uses 

and groups. For example, the SAFTE model was first developed for the 

Department of Defense (DOD), while the three-process model was designed for 

schedulers and planning staffs. 



 43 

1. Three-Process Model 

Folkard and Akerstedt (1992) designed the three-process model. The 

model was developed for the use of schedulers and planners responsible for 

assessing fatigue and performance effects of schedules. Other users include 

those interested in studying performance in relation to irregular work hours. The 

three-process model is nearly the same as the two-process model, except that 

that it has an additional process, called Process W. Process W represents sleep 

inertia and the waking-up process, which is not represented in the two-process 

model. The software allows for the following inputs: bedtime and sleep 

termination times, times of sleep, change in time zones, diurnal types, sleep 

length, and sleep problems. The primary output is a predicted alertness curve 

(Folkard & Akerstedt, 1992). 

2. Fatigue Audit InterDyne Model 

According to the Roach, Fletcher, and Dawson (2004), the fatigue audit 

interDyne (FAID) model, developed at the University of South Australia’s Center 

for Applied Behavorial Science, can be used to quantify work-related fatigue 

associated with any duty schedules using hours of work. Utilizing the three-

process model, the sole inputs are the start and end times of work periods. 

Schedules are modeled as a square wave function between work and non-work. 

Work-related fatigue is linearly related to the length of the work period, while non-

work related recovery is related to the circadian rhythm with a sinusoidal wave. 

There is also a weighting factor, or recency component, that places an emphasis 

on recent work or recent nonwork periods. The output of FAID is a generic 

variable representing fatigue that results from an overall fatigue score that is 

generated by an algebraic function of work and nonwork weighted by the recency 

component (Roach et al., 2004). 

3. Circadian Alertness Simulator Model 

Moore-Ede and Mitchell invented and patented the circadian alertness 

simulator (CAS) model as a practical tool for assessing the risks of fatigue in the 
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24/7 workplace (e.g., the railroad industry) in 1995. The ultimate goal of the 

model is reduce the rate of injuries and deaths caused by fatigue-related 

workplace accidents (Moore-Ede et al., 2004). The CAS can be used to assess 

operational fatigue risk, work schedule optimization, and fatigue-related accident 

investigation (Moore-Ede et al., 2004). 

Using the basic Two-Process Model, employee work schedules are inputs 

into the model and sleep alertness patterns are estimated. Process S of the Two-

Process Model is modeled as an exponential function that increases during sleep 

and decreases during wakefulness (Moore-Ede et al., 2004). Thus, the model 

assumes that recovery during sleep occurs exponentially, implying that the first 

several hours of sleep contribute more to recovery than the last few hours (Dijk & 

Larkin, 2004). This simplifying assumption may help explain the failure of many 

current models in predicting fatigue resulting from chronic partial sleep 

deprivation (Dijk & Larkin, 2004). Process C is modeled with a 24-hour sinusoidal 

wave function. The output is a calculated cumulative fatigue score resulting in a 

minute-by-minute, continuous alertness curve for the time period of interest. 

Statistics related to sleep, work, and alertness are provided in a table or graph, 

which provides for easier analysis. One drawback of the CAS Model is that even 

though it is designed to predict alertness for individuals, it is not biometrically or 

psychometrically individualized. Only “morningness” or “eveningness,” and a 

person’s age, can be input as trait variables (Dijk & Larkin, 2004). 

4. Sleep, Activity, Fatigue, and Task Effectiveness Model 

The SAFTE model is a biomathematical fatigue model that was introduced 

in 1996, updated in 2002, and patented in 2003. Hursh, a renowned research 

psychologist and career Army officer, developed the SAFTE Model while working 

at Scientific Applications International Corporation (SAIC). It was, however, a 

truly joint effort among multiple DOD laboratories and independent corporations 

throughout the United States, spanning over two decades, that helped develop 

the SAFTE Model into what is today. The U.S. Army’s groundbreaking sleep 
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deprivation and performance research at the Walter Reed Army Institute of 

Research (WRAIR), at which Hursh was the director of the Neuropsychiatry 

Division, paved the way for the evolution of the SAFTE model (IBR Inc., 2014). 

Other contributing laboratories included the Naval Health Research Center 

(NHRC), the Air Force Research Laboratory (AFRL), and the U.S. Army Aviation 

Research Laboratory (USAARL). Corporations, such as SAIC and NTI, Inc., also 

contributed key technical resources and manpower to the development of the 

SAFTE model and its implementation (Hursh, 2010). Subsequently, Hursh 

developed software packages known as the FAST and later SAFTE-FAST to 

provide user-friendly, stand-alone computer programs that allowed SAFTE to be 

applied to real-world scenarios. 

a. Background 

While representing the Army Medical Research and Development 

Command, later redesignated as the Medical Research and Materiel Command 

(MRMC), Hursh supervised the development of the first model capable of 

modeling the effect of sleep deprivation on Army unit effectiveness during the 

latter stages of his Army career (Hursh, 2010). The Army Unit Resilience 

Analysis (AURA) program, developed by the Ballistics Laboratory at Aberdeen 

Proving Grounds, provided the initial modeling platform for this ground-breaking 

research. Although, the code was enormous, through the efforts of computer 

programmers at SAIC and by building on initial fatigue code developed by 

Klopcic in 1989, which was subsequently translated into a FORTRAN computer 

program by McNally, the model allowed for relatively easy experimentation by 

1993. Overall, the model demonstrated that the productivity of Army artillery units 

was maximized following eight hours of sleep (Hursh, 2010). Unfortunately, this 

model was eventually abandoned based on fundamental contradictions and 

laboratory results on chronic sleep restriction at WRAIR (Belenky et al., 2003). 

Nevertheless, the success of this model as an instrument for translating fatigue 

research results into operational efficiency measurements laid the groundwork 
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for additional research and modeling that led to the development of the SAFTE 

Model and other efforts that continue today. 

After retiring from active duty in 1995, Hursh joined SAIC to head their 

biomedical modeling and analysis program (Hursh, 2010). It was during his time 

at SAIC that he developed the initial version of the SAFTE Model. While working 

under contract for the WRAIR, Hursh built on a long tradition of WRAIR sleep 

and fatigue research dating back to the 1950s. His task now, however, was to 

construct a model that could be built into a wrist-worn activity monitor capable of 

providing soldiers and unit leaders with instantaneous feedback in regards to 

soldier performance capability (Hursh, 2010). Following meetings with WRAIR 

scientists, Belenky and Balkin and Hursh and his team realized that the original 

AURA Model possessed a fatal flaw. This realization proved crucial for 

subsequent fatigue modeling. The flaw was that if someone lacked the required 

eight hours of sleep per day, he or she would eventually “exhaust their 

performance resources and degrade to zero effectiveness” (Hursh, 2010, p. 50). 

Since little laboratory evidence supported otherwise, sleep experts at the time 

believed that, while restricted sleep reduced performance, equilibrium would be 

reached at some point, preventing performance from reaching zero (Hursh, 

2010). The goal now was to construct a model that incorporated the equilibrium 

theory (Hursh, 2010). 

The main challenge in developing a robust fatigue model was a lack of 

necessary data (Hursh, 2010). An abundance of data on both baseline 

performance of fully rested individuals and performance of completely sleep-

deprived individuals (up to 84 hours of sustained wakefulness) existed. 

Unfortunately, information on “sleep doses” between eight and zero hours per 

day, the essential data required for developing fatigue models, was nearly 

nonexistent (Hursh, 2010). All fatigue modelers at the time were forced to 

interpolate between the two extremes, while also being provided little guidance 

on the consequences of partial sleep deprivation and sleep restriction. From the  
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realization of this vital knowledge gap, emerged a field of research focusing on 

the effects of patterns of sleep deprivation on cognitive performance (Hursh, 

2010). 

During the winter of 1996, Hursh constructed the basic mathematical 

structure of a fatigue model that eventually became the WRAIR sleep and 

performance model (SPM) (Hursh, 2010). This original model, although altered 

and upgraded many times, started out as a simple spreadsheet calculator. 

Significantly, similar to other physiological processes, this fatigue model was 

homeostatic (Hursh, 2010). Delivered to the Army in the spring of 1997, the 

model was implemented in a wrist activity monitor that detected and scored 

sleep, calculated performance effectiveness, and provided immediate feedback 

to the soldiers through a visual display. WRAIR SPM was validated against data 

from several WRAIR and other independent laboratory studies, in which it was 

found to have “surprising generality and utility” (Hursh, 2010, p. 51). From SPM 

evolved the SAFTE Model. 

b. SAFTE Model Description 

SAFTE is a three-process, quantitative biomathematical simulation similar 

to those developed by Folkard and Akerstedt (1987), Achermann and Borbely 

(1992), Akerstedt and Folkard (1995), and Jewett and Kronauer (1999). A 

conceptual architecture of the SAFTE model is presented in Figure 7. SAFTE 

combines the effects of sleep pattern, time of day, and sleep inertia. A circadian 

process influences both performance and sleep regulation. Sleep regulation 

(homeostatic sleep drive) is a function of hours of sleep, hours of wakefulness, 

current sleep debt, the circadian process, and fragmentation or awakenings 

during a period of sleep resulting from a poor-quality sleep environment (IBR, 

Inc., 2014). Performance is a function of the current balance of the sleep 

regulation process, the circadian process, and sleep inertia. Furthermore, 

available actigraphy data from wrist activity monitors continue to be a major 

source of sleep information to drive the model (IBR, Inc., 2014). 
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Figure 7.  Block Diagram of the SAFTE Model (from Hursh, Redmond et al., 
2004, p. A44). 

SAFTE is applied to hypothetical or prospective work and sleep schedules 

as a means of discovering performance decrements. Furthermore, it is used to 

optimize operational planning and management (Hursh, Redmond et al., 2004). 

Originally designed with the three-process model, the SAFTE model was 

embellished with a fourth process that modulates the sleep reservoir capacity 

during chronic sleep restriction. This accounts for slower-than-expected rebound 

of performance after recuperative sleep. Additionally, SAFTE accounts for 

circadian shifts as a result of transmeridian travel and shiftwork schedules 

(Hursh, Redmond et al., 2004). 

At the core of SAFTE is a “sleep reservoir,” maintaining a balance of 

effective performance “units.” The variation in reservoir level models the 
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homeostatic regulation of sleep. Performance capacity is equivalent to Process 

S. Process C models the influence of circadian rhythms in sleep-wake regulation. 

Process W models sleep inertia (Hursh, Redmond et al., 2004). When an 

individual is fully rested in optimal conditions, he or she has a finite, maximum 

performance capability (Hursh, Redmond et al., 2004). 

While awake, the sleep reservoir contents are depleted and while asleep 

the contents of this reservoir are replenished (Hursh, Redmond et al., 2004). 

Sleep accumulation is based on sleep quality and intensity. Going one step 

further, sleep intensity is controlled by the circadian process (i.e., factors in the 

time of day that sleep is acquired) and the current contents of the reservoir (sleep 

debt) (Hursh, Redmond et al., 2004). 

Sleep quality is judged based on continual or fragmented sleep as 

determined by real-world demands and requirements to perform (Hursh, 

Redmond et al., 2004). Sleep fragmentation is modeled by inserting a penalty for 

sleep interruptions. The output of the SAFTE Model is predicted effectiveness, 

which differs depending on the circadian effects and the reservoir level. Sleep 

inertia is also modeled in order to capture the temporary performance 

decrements immediately upon awaking from sleep (Hursh, Redmond et al., 

2004). 

c. Limitations and Advantages 

The SAFTE Model possesses several key limitations. First, with the 

exception of “morningness/eveningness” preference, the physiological fatigue 

model is the same for all personnel. In other words, individual sleep needs are 

not yet incorporated into the model. If individual sleep need data becomes easier 

to obtain in the future, however, a factor accounting for it could be added to the 

model (IBR, Inc., 2014). Second, it does not estimate group variance of the 

average performance prediction (IBR, Inc., 2014). An additional limitation is the 

inability to predict the effects of stimulants (e.g., caffeine and d-amphetamine) 

used for extending performance or sedatives (e.g., melatonin and prescription 
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sleep aids) for enhancing sleep (IBR, Inc., 2014). These considerations are of 

particular interest for military operations, where pharmacological 

countermeasures are regularly used for performance enhancement. Additionally, 

the following factors are not accounted for: parametric environmental sleep 

quality, workload and time-on-task, and environmental performance shaping 

functions (such as heat, motion, etc.) (Hursh, 2014; Hursh, Redmond et al., 

2004). The myriad of lessons from real-world operations and additional research 

since the development of the SAFTE Model are not yet fully incorporated into the 

model (Hursh, 2014). Sleep and wake are considered completely separate and 

absolute states. In other words, with the exception of a factor accounting for the 

quality of one’s sleep environment, the dynamic nature of sleep and wakefulness 

are not accounted for in the model. Finally, circadian modulation and circadian 

phase are, as Hursh describes, “hard-wired” into SAFTE’s algorithm (Hursh, 

2014). 

Even with its limitations, SAFTE is the world’s leading sleep and fatigue 

model (Hursh et al., 2004; IBR, Inc., 2014). Although the underlying 

mathematical model structure is conceptually similar to others proposed and 

accepted before SAFTE’s development, the current version takes advantage of 

advancements and research made in the last decade and a half. Some of the 

most important enhancements include the incorporation of prolonged sleep 

restriction and recovery from sleep loss (Hursh et al., 2004; IBR, Inc., 2014). The 

SAFTE Model was validated against laboratory results in 2002 and subsequent 

operational studies through work with the Federal Railroad Administration (FRA) 

and commercial airline industry and the Federal Aviation Administration (FAA). 

Detailed descriptions of the model are published and peer reviewed (Hursh et al., 

2004; IBR, Inc., 2014). When independently evaluated against all other available 

sleep and fatigue models, SAFTE performed with the least amount of error of any 

model under the conditions of partial sleep deprivation, which is characteristic of 

sustained military operations (Van Dongen, 2004). 
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d. Key Features 

The SAFTE Model, as implemented in the SAFTE-FAST software, has 

several essential capabilities not included in any prior models (the SAFTE-FAST 

software is discussed more in depth in the next section). Most notably, SAFTE-

FAST is optimized to predict changes in cognitive performance, as opposed to 

only alertness (IBR, Inc., 2014). It predicts the decline in sleep intensity over a 

period of sleep. SAFTE is able to incorporate the deleterious effects of sleep 

fragmentation and multiple sleep interruptions (Hursh & Bell, 2001). By utilizing a 

multi-oscillator (sum of two cosine waves) model for the circadian process, 

SAFTE is able to incorporate the 24-hour asymmetrical cycle of performance. 

Thus, it can predict the performance nadir associated with the early morning 

hours and the performance drop associated with the midafternoon hours of the 

day. Circadian variations in sleep quality, limitations on performance under 

schedules that require daytime sleep, sleep inertia, transmeridian travel effects 

(i.e., jet lag), and shiftwork can also be predicted (Hursh & Bell, 2001). 

The SAFTE-FAST model performs well in operational environments due to 

three vital components. First, the AutoSleep algorithm estimates potential 

patterns of sleep based on the opportunities to sleep provided by an individual’s 

work schedule and activities (IBR, Inc., 2014). The ability to estimate sleep and 

performance is particularly useful in military operational environments, where 

direct measurement of sleep is not always available. Furthermore, the AutoSleep 

feature can be used in conjunction with actigraph-monitored sleep 

measurements when possible. Several studies by the FRA demonstrated that, 

based on wrist-worn activity monitors, AutoSleep is 87% accurate in predicting 

actual sleep patterns and came within seven minutes of calculating average 

sleep per day for train crews (IBR, Inc., 2014). 

The second essential component is a feature that accounts for the long-

term effects of sleep restriction. Based on laboratory studies conducted at 

WRAIR, demonstrating the long-term effects of sleep deprivation and the 

resultant slow recovery, SAFTE was updated to account for such effects (IBR, 
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Inc., 2014). SAFTE accounts for approximately 94% of the variance in average 

performance observed in laboratory studies (IBR, Inc., 2014). 

The third fundamental element is algorithm logic that adjusts the circadian 

phase of individuals based on changes in sunlight exposure, sleep timing, and 

time zones (IBR, Inc., 2014). The model’s ability to account for the dynamic 

nature of humans’ circadian rhythms is particularly important for individuals that 

regularly rotate their sleep and work times throughout all hours of the day, such 

as Navy watchstanders at sea. The tremendous power of the SAFTE model is 

best summarized as follows: 

The combination of the validated SAFTE biomathematical model 
with three additional algorithms in FAST confer important 
advantages to the SAFTE-FAST system compared to all other 
fatigue modeling systems for the prediction of operational risk. 
(IBR, Inc., 2014, p. 5) 

The SAFTE model is particularly useful in military applications. SAFTE 

was tested using empirically-derived data with outstanding predictive accuracy, 

especially for chronically restricted amounts of sleep. In fact, using data from a 

WRAIR study of chronic sleep deprivation, they obtained a R2 of 0.94 (Hursh, 

Balkin, Miller, & Eddy, 2004). The DOD selected SAFTE from other competing 

fatigue and performance models as the most complete, accurate, and 

operationally practical model (Hursh, Balkin, Miller, & Eddy, 2004). It is now the 

model of choice for DOD operational planners and schedulers. 

J. FAST AND SAFTE-FAST COMPUTER SOFTWARE 

FAST is the software that incorporates the SAFTE Model. The U.S. Air 

Force first implemented the model as a user-friendly stand-alone computer 

program through the use of FAST in 2000. The FAST software was developed 

through parallel efforts at Brooks Air Force Research Laboratory, WRAIR, NTI, 

and SAIC. Yet, due to additional investment from the Department of 

Transportation, the SAFTE model and FAST continued to be enhanced, 

culminating in the current version of the model and software known as SAFTE-
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FAST (Hursh, 2010). As of today, SAFTE-FAST is a Windows-based software 

package designed to tabulate and graphically display patterns of cognitive 

performance changes over a period of time and estimate factors affecting fatigue 

during any point in an actual or hypothesized schedule (IBR, Inc., 2014). 

1. FAST 

FAST is a user-friendly software program designed for use by operational 

planners and schedulers. Using FAST, predicted effectiveness can be 

ascertained for periods of up to several months. For military operations 

specifically, FAST provides planners with the capability to optimize performance 

under conditions of limited sleep and minimizes the need for pharmacological 

aids (Hursh, Balkin et al., 2004). 

FAST integrates many interpretive tools for visualizing performance 

changes over a period of time. Multiple schedules can be compared on the basis 

of predicted changes in cognitive capacity. The user can easily view the effects 

of preprogrammed and user-defined sleep/wake schedules on predicted 

performance capability (Hursh, Balkin et al., 2004). The user interface enables 

rapid visual and quantitative estimates of how various factors affect individual 

cognitive performance. These tools provide users flexibility by allowing 

preprogrammed sleep schedules to be uploaded, edited, and saved, while also 

allowing for user-defined schedules to be uploaded from external programs, then 

edited and saved in FAST (Hursh, Balkin et al., 2004). In addition, actigraphy 

data from wrist activity monitors previously worn by test subjects can be 

uploaded into FAST to determine their predicted levels of effectiveness over a 

time period of interest (Hursh, Balkin et al., 2004). 

One of the most interesting FAST outputs is effectiveness. The model 

predicts effectiveness, which validation studies have shown is directly related to 

the percent change in reaction time on a PVT (IBR, Inc., 2014). The possible 

effectiveness score can range from 0 (unable to perform) to 100 (typical of a well-

rested human). Normal variation of effectiveness of a well-rested person 
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throughout a normal workday is between 90 and 100. As shown in Table 3, 

effectiveness continues to decline as the number of hours of sustained 

wakefulness increases. IBR, Inc. recommends closer examination of all 

effectiveness levels less than 77.5, especially if they are related to excessive 

sleep debt. Below this level, the Air Force uses countermeasures to improve 

performance (IBR, Inc., 2014). 

 

Table 3.   Relates continuous hours of wakefulness to FAST’s predicted 
effectiveness, reaction time, lapse likelihood score, and an equivalent 

Blood Alcohol Content (BAC). The increase in the hours of 
wakefulness is nonlinear due to circadian interactions (after IBR, Inc., 

2014, p. 18). 

FAST’s visual effectiveness graphic is an extremely useful feature. 

Performance predictions are displayed in user-selectable intervals ranging from 6 

hours to 30 days. A blood alcohol scale is provided to show how the effects of 

fatigue are comparable to alcohol intoxication, making the predicted results more 

easily interpretable by the user. A lapse index is provided that displays the 

likelihood that an individual will miss critical information. Finally, the “Dashboard” 

feature allows the user to interrogate any minute of data from the graphical 

display. Within the Dashboard pop-up window, five different fatigue factors, three 

alternative performance metrics, and the sleep reservoir level are displayed. 

The example of the primary FAST user interface, as seen in Figure 8, has 

several useful features. The different bands of color (green, yellow, red) 

Continuous 

Hours of 

Wakefulness

Effectiveness 

(% of 

Baseline)

Reactime Time (% 

increase from 

Baseline)

Lapse Likelihood 

(relative to 1 for a 

well rested)

Equivalent BAC

16 90 11 1.5 NA

18 80 25 3.1 < 0.05

18.5 77 30 3.7 0.05

19 75 33 4 > 0.05

21 70 43 5.2 0.08

40 65 54 6.5 > 0.08
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represent adjustable thresholds of predicted performance. Green represents a 

predicted effectiveness of 90% or better; yellow represents 65%–90% 

effectiveness; and red represents predicted effectiveness below 65%. 

 

Figure 8.  FAST plot generated using FAST version 2.9.04G_T (after NTI, Inc. 
& SAIC, 2012). 

The vertical axis on the right can be set to four different scales: blood 

alcohol content equivalence, lapse index, sleep reservoir level, or acrophase. 

Setting the right vertical axis to a blood alcohol equivalence scale allows for 

direct comparison of the effects of alcohol intoxication to the effects of fatigue 

based on empirical studies conducted by Dawson and Reid (1997). Lapse index 

refers to a prediction of the likelihood of an individual experiencing a lapse or 

excessively long reaction time associated with “micro-sleeps” (IBR, Inc., 2014). 

For example, a lapse index of 2 means that a person is twice as likely to 

experience a lapse as a normal, well-rested person during an average day (IBR, 

Inc., 2014). Acrophase is the time of day at which a person reaches their 

circadian peak. In the SAFTE model, acrophase refers to the time at which the 

24-hour component of the circadian rhythm reaches its peak (IBR, Inc., 2014). 
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2. SAFTE-FAST 

Although the first aviation application of the SAFTE model was for the Air 

Force in 2000, the most advanced version of the SAFTE model, as implemented 

in SAFTE-FAST, has been optimized for the commercial airline and railroad 

industries (IBR, Inc., 2014). Commercial airlines started using SAFTE-FAST 

following substantial enhancements of the original SAFTE Model and FAST 

software. Currently, 22 commercial airlines, the Canadian and U.S. Air Forces, 

and 13 commercial railroads use SAFTE-FAST for operational planning and 

scheduling (IBR, Inc., 2014). 

SAFTE-FAST incorporates all aspects of the FAST software with several 

important additions. The most significant capability enhancement is SAFTE-

FAST’s ability to handle nearly an unlimited number of schedules and batch 

process files input by the user for analysis. SAFTE-FAST uses one of two user-

specified translators to process data. These translators are referred to as the 

shiftwork translator and aviation translator. Both translators are useful; however, 

the shiftwork option is designed for the rail industry, while the aviation translator 

is designed specifically for the aviation industry. The type and number of files 

required for conducting an analysis is dependent upon the translator selected by 

the user. The ability to batch process schedules significantly reduces processing 

time and the amount of “pointing and clicking” required of the user. 

Although most of the inputs into SAFTE-FAST are similar to those for 

FAST, SAFTE-FAST has the capability to output more robust data. The three 

main outputs are the manager table, summary file, and the visual FAST graphic. 

The manager table provides a user-friendly interface for compiling useful 

performance indicators such as occurrences below a certain threshold, total time 

below a designated criterion level, and performance level during user input 

critical times. The summary file provides detailed information on effectiveness at 

the beginning and end of desired intervals, minimum sleep reservoir at critical 

times, and distributes time in 5% bins of effectiveness (IBR, Inc., 2014). The 

visual FAST graphic is the same as the graphical display shown in Figure 8. 
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K. PAST STUDIES OF U.S. NAVY AIRCRAFT CARRIER PERSONNEL 
SLEEP, FATIGUE, AND PERFORMANCE 

There are two main studies concerning aircraft carrier personnel sleep, 

fatigue, and performance. The first study concerned the 1997 surge of the USS 

Nimitz (CVN-68) carrier strike group in support of Joint Task Force Exercise 

(JTFEX) 97-2. During the surge, the ship carried out four days of nearly 

continuous flight operations. The sleep data for this study was self-reported 

through surveys, while the performance and fatigue data was simply based on 

individuals’ perceived feelings of fatigue and effectiveness. The second study 

was conducted on the USS Stennis by John Loc Nguyen of NPS from 1 to 4 

February 2002, during which time the crew worked during the night and slept 

during the day in order to support night combat flight operations. Sleep data was 

collected via actigraphy wrist monitors. Individuals reported circadian adjustment 

via surveys. Body temperature was also collected. 

1. USS Nimitz and Carrier Air Wing Nine Surge Demonstration 

On 20 July 1997, as part of JTFEX 97-2, USS Nimitz, with Commander, 

Carrier Group Seven (CCG-7) and Carrier Air Wing Nine, commenced a high-

intensity strike campaign. Over the next four days, they executed 771 strike 

sorties and put 1,336 bombs on target. The Center for Naval Analyses (CNA) 

supported CCG-7 in the assessment of data collected during the surge. All of the 

data was collected via personnel surveys. In all, 193 individuals participated in 

the study (Jewell, Wigge, Gagnon, Lynn, Kirk, Berg, Roberts, Hale, Jones, 

Matheny, Hall et al., 1998). 

The fatigue survey collected data on hours of sleep and individuals’ 

perceptions of how well they were performing their jobs. The survey found that 

the more sleep an individual reported, the higher his or her rating of performance 

(Jewell, Wigge, Gagnon, Lynn, Kirk, Berg, Roberts, Hale, Jones, Matheny et al., 

1998). Three hours of sleep was found to be the critical value for personnel 

reporting satisfactory performance levels. In addition, sleeping longer than nine 
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hours appeared to do little for improving perceived performance (Jewell, Wigge, 

Gagnon, Lynn, Kirk, Berg, Roberts, Hale, Jones, Matheny et al., 1998). 

The study found little difference in self-reported sleep and performance 

between officer and enlisted personnel (Jewell, Wigge, Gagnon, Lynn, Kirk, Berg, 

Roberts, Hale, Jones, Matheny et al., 1998). Aircrew members however, tended 

to report slightly more hours of sleep and higher estimates of performance. In 

addition, the catapult and arresting gear personnel received the least amount of 

self-reported sleep and held a much lower perception of job performance. This 

finding confirmed anecdotal evidence that this particular group of enlisted 

personnel was stressed much more than other groups during the intense flight 

operations schedule (Jewell, Wigge, Gagnon, Lynn, Kirk, Berg, Roberts, Hale, 

Jones, Matheny et al., 1998). 

The objective method used to measure personnel fatigue during the surge 

was via the FIT System. Designed by PMI Incorporated to identify at-risk workers 

for a broad range of impairments such as alcohol, drugs, stress, fatigue, and 

sleep deprivation, the FIT System stimulates the eye with pulses of light (Jewell, 

Wigge, Gagnon, Lynn, Kirk, Berg, Roberts, Hale, Jones, Matheny et al., 1998). It 

then measures both the amplitude and response time of the involuntary eye 

reflexes (Jewell, Wigge, Gagnon, Lynn, Kirk, Berg, Roberts, Hale, Jones, 

Matheny et al., 1998). The main conclusion reached as a result of the FIT tests 

was that the majority of personnel judged to be at high risk by FIT were older and 

had fewer hours of sleep, but they did not self-report having serious decrements 

in their job performance or mental state (Jewell, Wigge, Gagnon, Lynn, Kirk, 

Berg, Roberts, Hale, Jones, Matheny et al., 1998). This finding supports other 

studies that show that as an individual’s sleep debt increases, their ability to 

judge their performance and fatigue levels diminishes. The study did not draw 

any other serious conclusions from the FIT tests concerning sleep and 

performance (Jewell, Wigge, Gagnon, Lynn, Kirk, Berg, Roberts, Hale, Jones, 

Matheny et al., 1998). 
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The most fatigued personnel during the surge appeared to be the highest-

ranking individuals. The Commanding Officer of USS Nimitz and the S-3 (Sea 

Control-3) Squadron Commander averaged the least amount of sleep and 

assessed their fatigue to be at a much higher level than during normal operations 

(Jewell, Wigge, Gagnon, Lynn, Kirk, Berg, Roberts, Hale, Jones, Matheny et al., 

1998). In fact, the S-3 Squadron Commander was labeled untestable by the FIT 

fatigue test, perhaps because he was so fatigued even before the surge started. 

Most individuals, with the exception of personnel in command positions, 

troubleshooters, and the personnel on the Operational Strike Planning Cell 

(OSPC), reported that fatigue did not have a significant impact on their 

performance (Jewell, Wigge, Gagnon, Lynn, Kirk, Berg, Roberts, Hale, Jones, 

Matheny et al., 1998). 

The major weakness of this study is that all sleep and performance data 

was based on self-reported surveys, which, unfortunately, allowed inaccurate 

and tremendously biased data to enter the analysis. Thus, any conclusions must 

be approached carefully if they are to be generalized. Without more accurate 

sleep data, such as that obtained by actigraphy wrist monitors, the actual amount 

of individual sleep is suspect. Furthermore, self-perceived job performance is 

even more suspect, especially when it is being studied during periods of extreme 

sleep deprivation and stress, such as during this study. Therefore, while 

important indicators, the performance data, analysis, and conclusions regarding 

performance during the surge must also be cautiously approached. 

2. USS John C. Stennis 

For his master’s thesis at the Naval Postgraduate School, Nguyen (2002) 

analyzed the fatigue levels and sleeping patterns of sailors on the USS John C. 

Stennis for four days of an inverted work-rest schedule during combat 

operations. Actigraphy, oral temperatures, and subjective rating scales were 

collected on 33 personnel from 1 to 4 February 2002. The overall findings of his 

thesis concluded that significant differences exist in both the quantity and quality 
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of sleep among different groups of sailors. For example, personnel working 

topside received significantly less sleep, which was more fragmented than the 

sleep of personnel working below decks. One explanation Nguyen proposed for 

these differences was light exposure restricting the release of melatonin prior to 

sleep. Additionally, the study was able to show that the predicted effectiveness, 

as determined by FAST, was much more degraded for personnel working topside 

(Nguyen, 2002). 

Nguyen (2002) provided several recommendations for commanders when 

adopting inverted sleep-rest schedules. First, commanders must be educated in 

regards to sleep deprivation and methods for combating sleep debt. Second, 

commanders must gradually phase in any operations that require personnel to 

adopt a reversed or near-reversed work-rest schedule. Specifically, work-rest 

schedules consisting of four hours on and four hours off should no longer be 

used because they prevent continuous sleep of at least 4.5-5.5 hours (Nguyen, 

2002). 

L. THE NAVY STANDARD WORKWEEK  

The NSWW is one of the tools used in determining manpower 

requirements for the Fleet. Workweeks for sea duty/operational units are 

determined by operational requirements based upon projected wartime 

conditions. Calculation of workweeks for shore units are based upon peacetime 

conditions. These workweeks are used by the Chief of Naval Operations (CNO) 

to document manpower requirements. 

Essentially, the Navy standard workweek breaks a standard seven-day 

week (or 168 hours) into two different categories: available time and non-

available time. Available time is calculated to be 81 hours, while the remaining 87 

hours of time is non-available time (Chief of Naval Operations [CNO], 2011). For 

an afloat (wartime) unit, non-available time is calculated based on sleep, 

messing, personal needs, and free time. Of note, 56 hours is allocated for 

sleeping (8 hours per night), 14 hours for messing, 14 hours for personal needs, 
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and 3 hours of free time (CNO, 2011). Training (7 hours) and service diversion (4 

hours) are included in the available time. Thus, 70 hours per week are allocated 

for what the Navy terms “Productive Work” (CNO, 2011). Even though the Navy 

uses these somewhat detailed hourly breakdowns to determine manning levels, 

a fundamental concern is whether the Navy standard workweek is actually being 

followed by operational units and if sailors are able to obtain the Navy-directed 

eight hours of sleep per night. This study aims to contribute to the body of work 

concerning the NSWW and identify additional shortfalls. 

M. IMPROVED PERFORMANCE RESEARCH INTEGRATION TOOL 

The Human Research and Engineering Directorate of the U.S. Army 

Research Laboratory (ARL) developed IMPRINT to bolster efforts at Manpower 

and Personnel Integration (MANPRINT) and Human Systems Integration (HSI) 

organizations (Alion Science and Technology, 2014; ARLHSRED, 2010). 

IMPRINT takes into account task analysis, workload modeling, performance 

shaping, degradation functions and stressors, and embedded personnel 

characteristic data (Alion Science and Technology, 2014; U.S. Army Research 

Laboratory, Human Research & Engineering Directorate [ARLHSRED], 2010). 

IMPRINT Pro Version 4.1 is available to and capable of analyzing system and 

human performance problems for the Army, Navy, Air Force, and Marine Corps. 

Only one prior study, conducted by Hollins and Leszczynski (2014) at the 

Naval Postgraduate School for their master’s thesis, has applied IMPRINT Pro to 

a force level unit of the U.S. Navy. Their study took advantage of detailed work, 

sleep, and activity data collected by the CNA on personnel aboard the USS 

Freedom (Littoral Combat Ship [LCS]-2) during an underway period. Then, using 

the Forces module, they examined three different manning levels in order to 

compare the effects of different manning levels on mission accomplishment. 

Their study did not, however, take fatigue into account when analyzing crew 

personnel performance. Furthermore, they did not take full advantage of the 

stochastic modeling features of IMPRINT Pro (Hollins & Leszczynski, 2014). 



 62 

1. Capabilities 

IMPRINT Pro is a dynamic, semicustomizable, stochastic, discrete-event 

modeling tool (ARLHSRED, 2010). It can be used to evaluate the interaction of 

soldier and system performance throughout the lifetime of a system to include 

concept, design, field testing, and system upgrades (ARLHSRED, 2010). 

Specifically, IMPRINT Pro can be utilized to establish realistic system 

requirements, identify human-driven constraints on system design, evaluate the 

capability of available manpower to efficiently operate and maintain a system 

under external stressors, target soldier performance concerns in system 

acquisition, and estimate human-centered requirements early in the acquisition 

process (ARLHSRED, 2010). Additionally, a plethora of optional, yet extremely 

useful, “plug-ins” exist that allow a user to introduce additional capabilities into 

IMPRINT Pro (Alion Science and Technology Corporation, 2014; ARLHSRED, 

2010). 

2. Design 

As described by Alion Science and Technology Corporation (2014), Micro 

Saint Sharp, an embedded, discrete-event, task network modeling language, is 

the apparatus that drives the operation of IMPRINT Pro. The software utilizes 

four modules to build and/or parameterize networks that model the flow, and 

performance time and accuracy of operational missions and maintenance. The 

four modules are the Warfighters module, the Operations module, the 

Maintenance module, and the Forces module (recently added to IMPRINT). The 

Warfighters module provides an analyst with a tool to estimate the type of 

individuals that will be available to operate and maintain a system. The 

Operations module can be utilized to estimate the effect of operator performance 

on the performance of a system. Potential performance measurements include 

time, accuracy, and/or mental workload effects. The Maintenance module allows 

an analyst to estimate the maintenance man-hours necessary for attaining an 

acceptable level of system performance and availability. The Forces module, the 
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most useful for analyzing Navy manpower problems, can be utilized to analyze 

manpower requirements based upon planned activities and unplanned events 

(such as casualties or emergency situations) performed by a large group, such 

as a department on a ship (Alion Science and Technology Corporation, 2014). 

3. Forces Module 

The Forces module is the most applicable for analyzing an operational 

Navy unit at sea and, therefore, will be described in greater detail. Similar to the 

Maintenance module, the Forces module operates using a stochastic model that 

relies on user inputs. This module can provide four main insights into an 

operational unit: the elapsed time for planned and unplanned activities, the 

cumulative amount of time an activity was performed over the course of the 

entire model run, the status of an unplanned activity during the model run, and 

the number of unplanned activities that failed due to leader, subleader, and 

member requirements not being met (Alion Science and Technology Corporation, 

2014). Force analysis data consists of: 

 Force Units: A group of individuals that perform activities 
according to a schedule. 

 Schedule: Pre-defined sequence of activities, planned and 
unplanned, over a specific time frame. 

 Planned Activity: A routine task such as eating, sleeping and 
maintenance. 

 Unplanned Activity: An activity that interrupts a normal schedule 
such as an emergency or casualty type situation (e.g., fire and 
flooding). 

 Activities Priority List: Used to set task priority within a schedule 
for when any two activities compete for identical resources. 

 Jobs: Individuals that are distinguished by the types of functions 
they can perform. A job is defined by a name, specialty, rank, and 
role, e.g., “Reactor Operator.” 

 Job Role: The method by which a job (individual) contributes to a 
force unit. A job and a job role may be identical; however, they may 
differ when a job is capable of fulfilling more than one role in a force 
unit. A job may only fulfill one role at a time. 
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 Assets: The means for delivering needed equipment or features to 
an unplanned activity. 

 Asset Features: The equipment that is brought by or the features 
of an asset that determine an asset’s usefulness for combating the 
unplanned activity. (Alion Science and Technology, 2013) 

4. Limitations 

IMPRINT Pro has several limitations. Most significantly, it does not yet 

possess the capability of integrating Design of Experiments (DOE) for creating 

robust, space-filling designs that allow for regression analysis. Thus, although 

IMPRINT Pro is a stochastic modeling tool, it is still limited in its ability to simulate 

and analyze the effects of varying multiple variables across experiments. 

Second, the general architecture of IMPRINT Pro limits the user’s ability to 

customize simulations and analyses without significant recoding of the IMPRINT 

baseline code. Unfortunately, this customized approach requires expert-level 

coding ability in Micro Saint Sharp. Third, IMPRINT Pro’s modular design, 

although convenient for inexperienced modelers, prevents more advanced 

modelers from being able to combine features from different modules. For 

example, when using the SAFTE-FAST plug-in with the Forces module, fatigue is 

used only as a means of selecting the personnel that respond to a particular 

unplanned activity. Fatigue does not affect the actual performance of personnel 

responding to the unplanned activity. Finally, IMPRINT Pro does not allow the 

user to input the number of simulation runs and does not automatically vary the 

random seed. The user is forced to manually run multiple scenarios and vary the 

random seed. Running a large number of simulations is nearly impossible due to 

the sheer man-hours required to do so. Ultimately, this requirement limits 

IMPRINT Pro’s capability in creating space-filling data sets that adequately 

represent the entire sample space. Unfortunately, these limitations allow for 

important portions of the sample space to go unexplored by the analyst, reducing 

IMPRINT Pro’s analytical power. 
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N. SUMMARY 

This thesis builds upon past studies by monitoring the sleep of personnel 

on an aircraft carrier during normal steaming operations. This thesis provides for 

a better comparison against the Navy standard workweek and yield additional 

insights into sleep management during normal steaming and flight operations 

schedules. By collecting actigraphy data, this thesis avoids the pitfalls of some 

earlier studies that collected only self-reported sleep data. Also, for the first time, 

this thesis uses SAFTE-FAST to study the fatigue levels and work schedules of 

an operational unit at sea. 

  



 66 

THIS PAGE INTENTIONALLY LEFT BLANK 



 67 

III. METHODOLOGY 

A. OVERVIEW 

The main objective of this thesis is to evaluate the sleep of sailors on 

board the USS Nimitz (Carrier Vertical Nuclear [CVN]-68) during normal 

steaming operations, as part of their 2013 Deployment to the Fifth Fleet AOR. 

This thesis analyzes two weeks of sleep data collected using continuous 

measures of actigraphy and self-reported sleep. Sailors completed several 

different surveys and questionnaires as part of the data collection process. The 

analysis includes a comparison of actigraphy-monitored sleep and self-reported 

sleep, as well as a comparison of both forms of sleep data to the NSWW. A 

comparison of actigraphy-monitored sleep to actigraphy-monitored rest is 

included as part of the NSWW analysis. Finally, the predicted effectiveness of 

participants is analyzed using FAST software.  

B. PARTICIPANTS 

Participants included volunteers from various departments and watch 

stations on board the USS Nimitz. Efforts were made to include sailors and 

officers standing various watch rotations and performing different duties 

throughout the ship. All participants signed a consent form, minimum risk consent 

form, and a privacy act statement prior to data collection. For this analysis, a total 

of 32 participants were used. Of these participants, 25 were male and 5 were 

female. The average age of all participants was 27.28 years and ranged from 19 

to 35 years. They represented three main departments (groups) of the ship’s 

force, and possessed various educational backgrounds and military experience. 

Originally, 35 enlisted personnel and officers on board the USS Nimitz 

volunteered to participate in this study. For the actigraphy analysis portion of the 

study, however, three of the crewmembers were omitted due to incomplete data 

sets. Thus, only 32 participants were used for the actigraphy sleep analysis. For 

the NSWW and comparison of self-reported sleep to actigraphy-monitored sleep 
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analyses, nine participants were omitted because of either incomplete actigraphy 

data and/or self-reported sleep data. Thus, only 26 participants were examined 

for these analyses. 

C. APPARATUS 

The apparatus utilized for collecting and downloading actigraphy data 

included the Philips Respironics Actiwatch Spectrum and the Philips Respironics 

Actireader. The Respironics Actiware 5 software was used for conducting initial 

data scrubbing and cleaning, and analysis. Sleep and activity logs were used to 

collect data on the daily activities of each of the participants. Additionally, data 

was collected through the use of several questionnaires and sleep analysis 

surveys. 

1. Actigraphy 

This section describes the apparatuses used for collecting, downloading, 

and initially cleaning and analyzing the actigraphic data. The sleep and activity 

logs and the sleep analysis surveys used in this study are also described in this 

section. 

a. Philips Respironics Actiwatch Spectrum 

Actigraphy was originally developed as a means for empirically measuring 

and quantifying sleep prior to the advent of polysomnographic techniques. 

Polysomnography, however, is designed to study human sleep in laboratory 

settings, not on deployed naval warfighting vessels. Thus, actigraphy provides 

the only robust means for quantifying the sleep of members of the U.S. military in 

operational settings. Actigraphs are devices similar to wrist watches. One of the 

more robust and cost-effective actigraphs currently available is the Philips 

Respironics Actiwatch Spectrum (see Figure 9) manufactured by Philips 

Respironics, Inc. Through the use of an accelerometer, the device is able to 

monitor and store counts of slight body movements, which is then used to 

determine an individual’s sleep periods. Sleep periods are determined through 
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the use of algorithms built into the software and/or analysis of the graphically 

displayed actigraphy data by an experienced and well-informed analyst. Although 

not used in this study, Actiwatch Spectrums also have the ability to monitor and 

record ambient light through a built-in ambient light sensor (Philips Respironics, 

2009. 

 

Figure 9.  Philips Respironics Actiwatch Spectrum (from Philips Respironics, 
2009, p. 2). 

The memory of the Actiwatch Spectrums are cleared, checked for battery 

life, reset and reconfigured prior to each use. After the data are collected and 

stored in the Actiwatch Spectrums, the data are then downloaded to a personal 

computer using the Respironics Actiware 5 software package. A docking station, 

known as an Actireader (see Figure 10), uses infrared to communicate with the 

Actiwatch Spectrums and is connected to a personal computer through a 

universal serial bus (USB) cable. The Actireader provides the hardware interface 

for configuring the Actiwatch Spectrums prior to data collection and for 

downloading the actigraphy data following data collection (Philips Respironics, 

2009. 
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Figure 10.  Philips Respironics Actireader (from Philips Respironics, 2009, p. 2). 

2. Respironics Actiware 5 

The software used to configure the Actiwatch Spectrums, download the 

actigraphy data files, and edit actigraphy data files is called Respironcs Actiware 

5 (see Figure 11), developed by Philips Respironics, Inc. The all-in-one nature of 

this software provides an efficient means for downloading and editing the 

actigraphy data. Previous actigraphy software required multiple steps for 

downloading and converting actigraphy data files into a readily usable format. 

The Respironics Actiware 5 software program provides a graphical user 

interface (GUI) for editing and conducting surface-level analysis of actigraphy 

data, as shown in Figure 11. The software allows the user to create databases 

for different studies or multiple databases for the same study, if necessary. 

Within a database, multiple actigraphy data files can be stored. An actigraphy 

data file is created for each participant and is linked to the sleep watch from 

which the actigraphy data originated. From the Actiware software, multiple 

summary statistics for sleep, rest, and wake periods can be exported as a 

comma separated values (CSV) file, which can then be analyzed further in Excel 

or reformatted, if necessary, and read into other statistical analysis software. 
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Figure 11.  Screen shot of a participant’s actigraphy data, as shown in 
Respironics Actiware 5 software version 6.0.0 (after Philips 

Respironics, 2013). 

As shown in Figure 11, each row of the actigraphy data represents 24 

hours of data collected from 0000 to 2400. The time periods highlighted in the 

darker blue represent sleep episodes, while the lighter color blue, which 

frequently bookends the sleep episodes, represents rest periods. The rest 

periods represent the total time that the participant spent in bed, which includes 

the sleep episode as well. The darkest color blue represents off-wrist time. 

During these periods, no actigraphy data are available. 

Within the software, there are a multitude of options available for editing 

the data. Algorithms for determining sleep, rest, and wake periods are built into 

the software and can be activated for assisting in the editing of the actigraphy 

data. The option can be selected or deselected on a participant-by-participant 

basis. The software will automatically determine the time periods in which a 
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participant most likely removed the Actiwatch (known as off-wrist time). Once 

again, this option can be selected or deselected on a participant-by-participant 

basis, as determined by the analyst. Additionally, the user can manually enter 

rest, sleep, wake, and off-wrist periods, as necessary. There are additional 

options for entering forced-wake and forced-sleep periods that become 

necessary under various circumstances, most notably prior to exporting the 

actigraphy data to SAFTE-FAST. 

The software also allows for varying degrees of granularity when editing 

the actigraphy data. For example, in order to obtain an overall understanding of a 

participant’s sleep over the course of the entire study, a user may choose to view 

multiple days simultaneously (the software allows up to 21 days to be viewed at 

once). At some other point in the analysis and editing process, however, it may 

become necessary to only see one day or less at a time. The software is flexible 

enough to allow for robust editing of actigraphy data files. Furthermore, the 

editing capability is absolutely crucial in accurately determining a person’s sleep 

and wake periods. 

3. Sleep and Activity Logs 

At the start of the time periods in which the participants were to take part 

in the study, each individual was issued a sleep and activity log (see Figure 12). 

Each log was labeled with the participant’s identification number. The activities 

that a participant can log were based on those outlined in the NSWW and 

participants also logged when they removed the Actiwatch. The activities outlined 

in the NSWW are sleep, personal time, free time, maintenance and work, 

training, watch, and service diversion (including meetings). Recording activities in 

this way allowed for a direct comparison of a participant’s daily activities to the 

NSWW. The logs provided the capability for cross-referencing actigraphy data 

with self-reported activities during data cleaning. Furthermore, the logs provided 

a key tool for gaining a better understanding of a participant’s daily routine, 

eating habits, sleep patterns, watch rotations, and additional duties. This 
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information contributed significantly to determining the correct periods in which a 

participant was actually sleeping, resting, or awake, and ultimately provided for 

more accurate sleep and rest data. The logs also provided the opportunity to 

compare self-reported sleep and actigraphic sleep. 

 

Figure 12.  Sleep and Activity Log provided to participants on the USS Nimitz. 

The log divided a 24-hour period, in this case 0000 to 2400, into 15-minute 

blocks. Throughout the period in which an individual participated in the study 

(i.e., wore an Actiwatch), they recorded their daily activities, to include sleep to 
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the nearest 15 minutes. The day was separated into on-duty or available time 

and off-duty or non-available time. Available time and non-available time are 

further broken down into subcategories. Available time was split up into these 

categories: watch, maintenance and work, training, meetings, and service 

diversion. Non-Available time was split into these categories: sleep, messing, 

personal time, and free time. Participants were instructed to annotate any off-

wrist time as well. 

4. Questionnaires 

Questionnaires were used to gather basic information about each of the 

participants as well as information specifically focused on the period of time in 

which the study was conducted. Sleep analysis surveys were used to collect 

additional data about participant sleep. 

a. Demographic Questionnaire 

The purpose of the demographic questionnaire was to gather basic 

information such as gender, age, rank, rate, department, years of service, 

number of times deployed, watch section, watch rotation, etc. Participants filled 

out a hard copy version with either pencil or pen. Appendix A contains a copy of 

the demographic questionnaire. 

b. End-of-Study Questionnaire 

The purpose of the end-of-study questionnaire was to gather additional 

information about each participant that was specifically focused on the period of 

time in which the study was conducted. First, the questionnaire was used to 

determine any changes in a participant’s watch rotation and/or watch section and 

to determine if an individual had any collateral duties during the period in which 

the study was conducted. Second, the questionnaire sought to obtain each 

participant’s opinion in regards to the amount of sleep he or she received and 

that others received during the study period. Third, it asked several open-ended 

questions regarding watchstanding schedules. Finally, the questionnaire 
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gathered information about participants’ berthing location, rack orientation, and 

environmental factors affecting sleep. Participants filled out a hard copy version 

with either pencil or pen. See Appendix B for a copy of the end-of-study 

questionnaire. 

5. Sleep Analysis Surveys 

The sleep analysis surveys were distributed at the same time as the 

demographic questionnaires. The overall purpose of issuing these surveys was 

to gain additional insight into the quality of each participant’s sleep, the 

sleepiness level of each participant, and determine participants’ sleep 

preferences. 

a. Pittsburgh Sleep Quality Index  

The purpose of the PSQI was to determine the quality of each participant’s 

sleep. It is a self-administered questionnaire that assesses an individual’s sleep 

quality and disturbances. Participants filled out a hard copy version with pencil or 

pen. Appendix C contains a copy of the PSQI that participants filled out for this 

study. 

b. Epworth Sleepiness Scale  

The purpose of the ESS was to determine the daytime sleepiness and any 

potential sleep disorders of participants in the study. The ESS is a self-

administered instrument designed to assess the level of an individual’s daytime 

sleepiness. Participants filled out a hard copy version with pencil or pen. 

Appendix D contains a copy of the ESS that participants filled out for this study. 

c. Composite Scale of Morningness  

The purpose of the CSM was to determine if a participant is an owl (night 

person), lark (morning person), or robin (neither). The CSM is a self-administered 

instrument that is used to measure an individual’s behavioral temporal 
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preference. Participants filled out a hard copy version with pencil or pen. 

Appendix E contains a copy of the CSM that participants filled out for this study. 

D. IMPLEMENTATION AND DATA COLLECTION 

This study presented several unique challenges not yet faced by previous 

sleep theses at NPS. First, all sleep-monitoring equipment, questionnaires, and 

surveys needed to be mailed to the USS Nimitz while the ship was already on 

deployment to the Fifth Fleet AOR. Thus, the sleep watches were set to Zulu 

time, which presented challenges during data cleaning and analysis due to 

various time offsets as the ship changed geographic time zones throughout the 

study. Additionally, all sleep-monitoring equipment was activated prior to being 

mailed to the ship and the initiation of the official study; thus, there are a 

significant number of days with no sleep or activity data. Eliminating this 

unnecessary data required additional data cleaning. Second, in order to complete 

the study, the USS Nimitz’s Senior Medical Officer, Commander (CDR) John 

Moore, was relied upon to conduct all briefs and issue all sleep-monitoring 

equipment, surveys, and questionnaires. He was an essential member of the 

research team for this thesis. Final data collection occurred over a two-day 

period during the ship’s port call in Pearl Harbor, Hawaii. During this time period, 

various watchbills, unclassified operational schedules and deck logs, and, when 

possible, missing surveys, questionnaires, and sleep-monitoring equipment were 

collected. Finally, the unique nature of this study potentially contributed to a 

reduced number of participants and less complete data than otherwise may have 

been obtained. 

1. Actigraphy 

This section describes the method by which the Actiwatches were 

configured, how the Actiware 5 software was utilized, the periods of time in which 

data collection took place, and how many participants’ data were used for the 

analysis of actigraphic sleep data.  
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a. Philips Respironics Actiwatch Spectrum 

Prior to mailing the Actiwatches to the USS Nimitz, each was configured 

and initialized for data collection. Thus, the Senior Medical Officer issued the 

Actiwatches to participants without any additional manipulation. The serial 

number of the Actiwatch and an identification number (ID) was linked to each 

participant in order to ensure actigraphy and activity log data were matched to 

the correct participant. Each Actiwatch was labeled with a corresponding 

identification number to provide for easier cross-referencing of Actiwatch to 

participant during data collection and analysis. Actiwatches and data collection 

packets of sleep and activity logs were assigned to participants during three 

overlapping time periods, with participants taking part in only one of the time 

periods. The time periods in which participants wore Actiwatches and completed 

sleep and activity logs were: August 26, 2013 to September 11, 2013, September 

3, 2013 to September 17, 2013, and September 11, 2013 to September 24, 

2013. 

Although the time periods varied in which data was collected, the USS 

Nimitz’s operations were consistent throughout the entire time period in which the 

study was conducted. This schedule was verified through interviews with 

members of the crew, deck logs, and the daily operational schedule of the ship, 

also known as the daily “Green Sheet.” This provided for consistency in the 

operational environment between the time periods, thus preventing significant 

differences in the daily requirements between the groups as a result of the ship’s 

mission. Any difference between groups was not a result of differences in the 

ship’s operational schedule, but rather a result of the unique job, responsibilities, 

and/or watch of the participants. Upon completion of each of the time periods, the 

Actiwatches and sleep logs were collected from the participants and stored on 

board the ship. The Actiwatches and completed sleep and activity logs were 

collected from the ship between December 3, 2013 and December 5, 2013. The 

data were then downloaded to a personal computer using Respironics Actiware 5 

software and the Actiwatch Sprectrum Actireader. 
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b. Respironics Actiware 5 

Prior to mailing the Actiwatches to the USS Nimitz, a database was 

created linking each Actiwatch by serial number to an entry in the database 

(labeled by participant ID number). Thus, when the actigraphy data were 

downloaded, the software automatically matched each Actiwatch to the 

appropriate entry in the database. 

During the experiment, 35 participants were issued Actiwatches. Due to 

unexpected equipment failures, however, only 32 of the 35 participants were 

used in the analysis of actigraphy sleep as a result of significant amounts of 

missing actigraphy data because of participants removing their Actiwatches and 

other problems. Of these 32 participants, 11 were commissioned officers, 14 

were from the Reactor Department, and 7 were from the Deck Department. 

Officers were not included in the Reactor Department and Deck Department 

numbers, but rather only in the commissioned officers group. This grouping was 

chosen due to the uniqueness of officer schedules and responsibilities, 

compared to that of enlisted personnel. 

2. Sleep and Activity Logs 

Sleep and activity logs were issued to each participant at the beginning of 

the period in which they participated in the study. Each participant was provided 

basic instructions on how to fill out the log by a knowledgeable individual within 

the USS Nimitz’s Medical Department. In addition, a detailed example on how to 

properly fill out the sleep and activity log, as displayed in Figure 13, was included 

in the beginning of every log. 
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Figure 13.  Detailed example that was provided to each participant on how to 
properly fill out the sleep and activity logs. 

Due to several nearly incomplete sleep and activity logs, and other 

participants failing to return their logs, only 26 of the 35 participants were used in 

the analysis of self-reported sleep and the NSWW. Of the 26 participants, 10 

were commissioned officers, 13 were from the Reactor Department, and 3 were 

from the Deck Department. 
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3. Questionnaires 

A demographic questionnaire and an end-of-study questionnaire were 

completed by each participant at the beginning and at the end of the study period 

in which he or she participated, respectively.  

a. Demographic Questionnaire 

Participants completed the demographic questionnaires at the beginning 

of their participation period; however, since all participants did not return 

Actiwatches and/or sleep and activity logs at the end of the study period, not all 

demographic questionnaires were retained for analysis. Demographic surveys 

were retained for the 32 participants used in the actigraphy analysis and for the 

26 participants used in the self-reported sleep and NSWW analysis. 

b. End-of-Study Questionnaire 

Participants completed the end-of-study questionnaires upon conclusion 

of their participation in the study; however, since all participants did not return 

Actiwatches and/or sleep and activity logs at the end of the study period, not all 

end-of-study questionnaires were retained for analysis. Additionally, some 

individuals did not fill out exit surveys and/or some exit surveys were lost prior to 

final collection of materials in early December. As a result, 26 end-of-study 

questionnaires were used for the actigraphy and self-reported sleep analyses. 

4. Sleep Analysis Surveys 

Participants completed all three sleep analysis surveys at the beginning of 

their participation period when they filled out the demographic questionnaire; 

however, since all participants did not return Actiwatches and/or sleep and 

activity logs at the end of the study period, not all sleep analysis surveys were 

retained for analysis. Other contributing factors for not retaining some surveys 

included not answering a significant number of questions on a survey or 

answering a significant number of questions inappropriately. As a result, 32 of  
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the 35 surveys were retained and utilized for analysis. For the comparison of 

actigraphy and self-reported sleep, only 26 participants’ sleep analysis surveys 

were used. 

5. SAFTE-FAST 

This study, for the first time, used SAFTE-FAST to analyze the predicted 

effectiveness of U.S. Navy personnel on an operational unit at sea. SAFTE-

FAST, as described in Chapter I, is a robust and user-friendly tool used by 

schedulers and operational planners for determining optimal sleep and work 

schedules to mitigate the effects of fatigue. Although SAFTE-FAST has only 

been used in the aviation (civilian and military) and rail industries to this point, 

this thesis took advantage of SAFTE-FAST’s batch processing and unique 

algorithms in order to analyze the predicted effectiveness of watchstanders on 

the USS Nimitz. The detailed summary files offered by SAFTE-FAST allowed for 

analyzing not only average watchstander effectiveness during watch, but how 

operator effectiveness changed over time throughout a watch period. 

Furthermore, SAFTE-FAST’s built-in graphical features and fatigue analysis tools 

were used to gain better insight into personnel work, sleep, fatigue, and 

performance patterns. Thus, by simultaneously analyzing the ship’s operational 

schedule and available watchbills, SAFTE-FAST allowed for the detection of 

critical times when personnel fatigue detrimentally impacted effectiveness and 

had the potential to negatively impact the ship’s operations. 

E. DATA ENTRY AND FORMATTING 

Due to the large amount of handwritten data collected in this study, data 

entry proved to be time consuming and challenging. To guard against data entry 

mistakes, however, a third party was used to verify that all data were entered 

correctly. Additionally, automatic formatting and data processing techniques via 

Visual Basic for Applications (VBA) were utilized to reduce data entry errors and 

provide for easier subsequent analysis. 
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1. Sleep and Activity Logs 

Initially, all participants’ handwritten sleep and activity logs were entered 

into a Microsoft Excel 2010 file. The template used for the electronic version of 

the logs is shown in Figure 14. Due to either a significant amount of missing data 

or some participants not returning the log, only 26 participants’ hand-recorded 

logs were transferred to the Excel file. 

 

Figure 14.  Template used for electronically recording each participant’s 
handwritten sleep and activity log data. 

A single Excel workbook contained all of the activity and sleep logs, with a 

separate tab for each participant. The handwritten logs were transferred to the 

Excel file by typing in the appropriate code for each activity, as shown in Figure 

15. VBA code was then used to automatically color the cells, based on the entry 

in each cell, which reduced additional data entry time. Coloring the cells more 
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clearly delineated the activities and allowed for easier detection of patterns in the 

data. The transferred data were verified against the handwritten logs by a third 

party to ensure correctness of the initial data entry. 

 

Figure 15.  Legend showing the appropriate codes and automatic coloring for 
each activity. 

Of the 26 sleep and activity logs that were used in the study, additional 

data cleaning was still required. Because each individual’s daily routine, jobs, 

watch rotation, and sleep and wake patterns were unique, special care was taken 

when editing the self-reported sleep and activity data. Thus, by using patterns in 

each participant’s daily routine and cross-referencing actigraphy data, watchbills, 

and the ship’s operational schedule with a participant’s sleep and activity logs, 

time periods in which an individual did not log activities or sleep were edited to 

correctly reflect an individual’s activities. This process was also accomplished for 

time periods in which the participant logged the Actiwatch as removed, but based 

upon other data, a participant’s activities could be deduced. These methods of 

editing were only used for periods of time in which it was obvious, based upon a 

cross-reference analysis of the ship’s operational schedule, watchbills and 

patterns in a participant’s actigraphy data and daily routine, that a participant was 

engaged in a particular activity or sleeping. Any time that could not be accounted 

for—even after following this method—was designated as “unknown.” By 

completing such editing, additional data could be retained for analysis and the 

most accurate data could be used. 
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2. Actigraphy 

Of the actigraphy data that were retained, additional data cleaning was still 

required. Because each individual participant displayed different actigraphy data 

while sleeping and while awake, special care was taken when editing the 

actigraphy data. Some participants were more active sleepers, while others 

showed little movement while asleep. Furthermore, each participant displayed a 

unique daily routine that could include watch, naps, free time, etc. Thus, the 

actigraphy data, patterns in the actigraphy data, each participant’s sleep and 

activity log, patterns in each participant’s sleep and activity log, and the ship’s 

operational schedule were all used to edit the sleep, rest, and wake periods of 

each participant. 

After data cleaning, an output .csv file was generated. The Actiware 5 

software allows the user a plethora of choices in regards to the amount and type 

of data that are output. This data included the start and end dates and times for 

all rest and sleep intervals for each participant and the duration of each rest and 

sleep interval. Following some additional formatting, this tabular data set was 

saved as a .csv file and then imported into R Version 3.1.0 for subsequent 

analysis. 

3. Questionnaires 

This section describes the methods used for data entry and formatting for 

the questionnaire and sleep analysis survey data. 

a. Demographic Questionnaires 

Because the demographic questionnaires were filled out by hand by each 

of the participants, each had to be transferred into Microsoft Excel 2010 to allow 

for analysis. A single Excel worksheet was used, with each row corresponding to 

a participant and each column to a question or sub-question in the questionnaire. 

Although each participant answered some questions slightly differently, the 

reported data were re-coded during data transfer in order to standardize the 
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entries in the Excel file. A portion of the missing demographic data was 

accounted for by using the end-of-study questionnaires, the ship’s operational 

schedule, watchbills, and sleep and activity logs. 

b. End-of-Study Questionnaires 

End-of-study questionnaires were transferred into Microsoft Excel 2010 for 

analysis. A single Excel worksheet was used, with each row corresponding to an 

individual and each column to a questions or sub-question in the survey. Even 

though each participant answered some questions slightly differently, the 

reported data were re-coded during data transfer in order to standardize the 

entries in the Excel file. A portion of the missing exit survey data was accounted 

for by using the demographic questionnaires, the ship’s operational schedule, 

watchbills, and sleep and activity logs. 

4. Sleep Analysis Surveys 

Specialized Microsoft Excel 2010 files were created in order to score the 

PSQI, ESS, and CSM. Due to the surveys being completed with pen or pencil 

and paper, each participant’s results were manually transferred into the 

appropriate Excel file. Most participants correctly completed the surveys; 

however, some additional data cleaning was required. A third party verified all 

data entry for correctness. 

a. Pittsburgh Sleep Quality Index 

The PSQI survey results were calculated for each participant on a single 

worksheet within an Excel workbook. Each participant occupied a row and the 

columns accounted for the different questions in the PSQI. Columns were also 

made for the final PSQI global score calculation and the sleep quality category, 

as determined by the PSQI global score. The necessary formulas for calculating 

the PSQI global score were built into the worksheet. Thus, as each participant’s 

answers were transferred into the Excel document, the score automatically 

updated. Nearly all participants appropriately answered each question; however, 
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stochastic mean value data imputation was used for the hours in bed 

determination for five participants because their sleep and wake times were 

unable to be accurately determined. With this form of imputation, the missing 

values were replaced with the sample average that had a normally distributed 

error, with a variance equal to the sample variance. 

Once the PSQI global score and sleep quality category were determined, 

the two columns containing these results were saved in a new .csv file. Then, 

following additional formatting, the .csv file was saved and imported into R 

Version 3.1.0 for subsequent analysis. 

b. Epworth Sleepiness Scale 

ESS results were calculated for each participant on a single worksheet 

within an Excel workbook. Each participant occupied a row and the columns 

accounted for the different questions in the ESS. Columns were also made for 

the total score and the sleepiness level, as determined by the total score. All 

participants appropriately answered each question. 

Once the total score and sleepiness level were determined, the two 

columns containing these results were saved as a new .csv file. Then, following 

additional formatting, the .csv file was saved and imported into R Version 3.1.0 

for subsequent analysis. 

c. Composite Scale of Morningness 

CSM results were calculated for each participant on a single worksheet 

within an Excel workbook. Each participant occupied a row and the columns 

accounted for the different questions in the CSM. Columns were also made for 

the total score and the preference category, as determined by the total score. 

Several participants inappropriately checked multiple answers for several 

questions. Thus, a decision was made to choose the marked response that had 

the least effect on the results of the total score (i.e., the response that was closer 

to the median of the scale for that question). 
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Once the total score and the preference category were determined for 

each participant, the two columns containing these results were saved in a new 

.csv file. Then, following additional formatting, the .csv file was saved and 

imported into R Version 3.1.0 for subsequent analysis. 

5. Predicted Effectiveness 

In order to obtain the predicted effectiveness of participants using SAFTE-

FAST, three main files were generated: an explicit sleep file, a schedule file, and 

a duty file. The explicit Sleep file is an Excel file containing the actigraphic sleep 

episodes of all participants. To generate the explicit Sleep file, first, the 

actigraphy data were edited using the Respironics Actiware 5 software, as 

described in the previous section. Then a .csv file containing the sleep intervals 

(to include date, time, and duration) for all participants was exported from the 

Actiware software. The file was opened in Excel in order to conduct initial 

formatting of the data. Subsequently, the file was imported into R Version 3.1.0, 

where additional formatting was completed. Finally, a .csv file, properly formatted 

and ready to be imported into the SAFTE-FAST software, was generated using 

R. 

The schedule file is the file used for preconditioning the sleep for each 

participant. Specifically, this file is used to establish sleep and effectiveness for 

the three days prior to the start of the study period. Because work, sleep, and 

activity patterns are unknown prior to the start of a study period, the AutoSleep 

feature of SAFTE-FAST is used to establish the best estimate of sleep and 

predicted effectiveness prior to the start of the actual study period. All 

participants were preconditioned so as not to allow a predicted effectiveness of 

less than 95% prior to the start of the actual study period. The schedule file was 

generated using Excel. 

The duty file is the one used to determine the period of time in which each 

participant was on watch. Although any type of activity, such as training or 

maintenance, can also be entered into the duty file, watch was used in this study 



 88 

because it is the time when an individual is expected to be at their peak 

performance and is the most interesting type of activity to analyze. The duty file 

was created using Excel. 

Once the three necessary files were generated, SAFTE-FAST was used 

to generate a summary File and a FAST effectiveness graphic for each 

participant. The summary file, following additional formatting, was exported as a 

.csv file and read into R Version 3.1.0 for subsequent analysis. The FAST 

effectiveness graphics were exported as FAST schedule files and used to gain 

insight into each participant’s overall pattern of sleep and activity, and their 

predicted effectiveness during periods of watch. The FAST graphic provides a 

useful tool for identifying particular individuals that warrant further investigation 

and to examine overall trends in each participant’s predicted effectiveness. 
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IV. RESULTS AND DISCUSSION 

A. OVERVIEW 

This chapter contains the statistical analyses performed on the 

demographic questionnaires, actigraphy data, self-reported sleep, sleep analysis 

surveys, and SAFTE-FAST-generated predicted effectiveness data. Section B of 

this chapter provides results of the statistical analyses of demographic and sleep 

analysis survey data. Section C contains detailed results of the statistical 

analyses of the actigraphic sleep data and Section D contains results from an 

analysis of the NSWW. Section E provides a comparison of the self-reported 

sleep and actigraphic sleep data, while Section F details the results of the 

SAFTE-FAST analysis. 

B. ANALYSIS OF DEMOGRAPHIC AND SLEEP ANALYSIS SURVEY 
DATA 

The 32 participants represented various departments throughout the ship 

and had varying levels of military experience and educational backgrounds. The 

data were examined for potential differences in age, gender, commissioning 

status (officer or enlisted sailor), department, and watchstation location. Also, 

potential differences in ESS and CSM results were examined. Of note, although 

not discussed in detail in this chapter, the PSQI analysis determined that all but 

one participant experienced poor sleep quality while at sea. 

In the subsequent sections, unless otherwise noted, due to ties in the 

data, normally approximated confidence intervals for the medians of the 

respective variables and categories of interest, as calculated by Wilcoxon Signed 

Rank tests (with no continuity correction), are provided in the tables of summary 

statistics. Furthermore, as a result of ties in the data, the p-values calculated 

using Wilcoxon Rank Sum Tests (  = 0.05) are normally approximated. For all 

analyses involving count data, the Pearson’s Chi-squared Test was used and 

verified against the results of the Fisher’s Exact Test. When the results were in 
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close agreement, the p-value calculated using the Pearson’s Chi-squared Test 

was reported; otherwise, the p-value calculated by the Fisher’s Exact Test was 

reported. 

In order to examine differences between departments, the participants 

were separated into the following three groups: Deck Department, Reactor 

Department, and officers. Furthermore, since each group used a different watch 

schedule (e.g., 5ON/10OFF Deck Department, 5ON/15OFF Reactor Department, 

and 4ON/20OFF officers), separating the participants into these groups provides 

additional insight into the different watch schedules. A 5ON/10OFF watch 

schedule means that an individual stands five hours of watch and then has 10 

hours off watch before going back on watch again. During the 10 hours off, an 

individual is expected to work, take care of personal issues, eat, and sleep. The 

other watch rotations follow the same routine, but with different amounts of on-

watch and off-watch time. 

The analysis considers officers as a separate “department” because 

officer schedules are traditionally much different from those of enlisted sailors. 

Although, in this study, officers come from a wide variety of actual departments 

(Administration, Weapons, Engineering, etc.), they shared similar day-to-day 

schedules, warranting separating the participants into separate groups. 

1. Age 

The summary statistics for participant age are displayed in Table 4. Table 

5 presents the two-tailed p-value and the name of the statistical test used for the 

tests of statistical significance conducted with regard to age for the different 

variables of interest. 
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Table 4.   Summary statistics of participant age (n=32). 

 

Table 5.   P-value results and the name of the statistical test used for 
determining statistical significance (  = 0.05) in regards to age for 

the variables of interest. 

The distribution in Figure 16 shows that the seven females are split 

between the younger and older age groups. Additionally, 22 of the 32 participants 

reported that they were at least 25 years old. Eighty percent of male and 29% of 

female participants were identified as being 25 years or older. Of note, the 

majority of female participants were 24 years or younger, yet there were two 

female participants 33 years or older as well. 

Mean Median Range Std Dev Skewness Kurtosis Confidence Interval (95%)

All Participants 27.3 27.0 [19, 35] 5.0 –0.08 1.63 [25.5, 29.5]

Male 28.0 27.0 [21, 35] 4.5 –0.30 1.9 [26.5, 30.0]

Female 24.7 22.0 [19, 35] 6.5 0.90 1.9 [20.0, 30.0]

Enlisted 25.1 25.0 [19, 35] 4.6 0.63 2.3 [22.5, 27.0]

Officer 31.6 32.0 [27, 35] 2.5 –0.80 2.7 [29.5, 33.0]

Reactor 26.5 26.5 [21, 35] 4.2 0.50 2.4 [24.0, 29.5]

Deck 22.1 21.0 [19, 31] 4.0 1.80 4.7 [19.5, 26.5]

Belowdecks 25.7 25.5 [20, 35] 4.4 0.50 2.2 [23.5, 27.5]

Topside 29.9 31.5 [19, 35] 5.1 –1.30 3.3 [26.0, 33.0]

p-value (2-tailed) Type of Test Statistically Significant?

Gender 0.18 Wilcoxon Rank Sum No

Commissioning Status 0.0004 Wilcoxon Rank Sum Yes

Department 0.0004 Kruskal-Wallis Rank Sum Yes

Watchstation Location 0.03 Wilcoxon Rank Sum Yes
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Figure 16.  Histogram of age delineated by gender. 

2. Gender 

Seventy-eight percent (25/32) of participants were males; 22% of 

participants were female. Possible gender differences in questionnaire and 

survey responses, and actigraphy and self-reported sleep and activity data are 

described in subsequent sections. 

3. Commissioning Status 

As shown in Figure 17, 66% (21/32) and 34% (11/32) of participants were 

enlisted and officer personnel, respectively. Eighty-six percent of female and 

60% of male participants were enlisted, while 14% of female and 40% of male 

participants were officers. 
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Figure 17.  Bar plot for the number of enlisted and officer participants delineated 
by gender. 

As shown in Figure 18 and Table 4, the range of ages for enlisted 

participants was greater than the range of ages for officers. As shown in Table 4 

and Table 5, officers in this study tended to be older than enlisted participants. 

 

Figure 18.  Histogram of age delineated by commissioning status. 
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4. Department 

The Deck Department was the only predominantly female department 

(see Figure 19); however, all departments consisted of both males and females. 

Based on the Fisher’s Exact Test for Count Data (  = 0.05), the difference in the 

proportion of males and females in each department was significant at the p-

value = 0.06 level, due to the proportionally higher number of females in the Deck 

Department. 

 

Figure 19.  Bar plots of department delineated by gender. 

Table 4 displays the summary statistics for age by department.. Figure 20 

illustrates that the age ranges of the departments differed. As shown in Table 5, 

the difference in age between the departments was statistically significant (p-

value = 0.0004). Officers tended to be older, while the Deck Department was the 

youngest group. 



 95 

 

Figure 20.  Boxplot of age by department. 

Based on a pairwise Multiple Comparison Wilcoxon Rank Sum Test using 

the Holm’s p-value adjustment procedure (family-wide   = 0.05), a statistically 

significant difference in age existed between each of the departments. The  

p-values for each of the pairwise comparisons are displayed in Table 6. 

 

Table 6.   Table of pairwise p-values for comparing the age of participants of 
the three different departments using the Multiple Comparison 

Wilcoxon Rank Sum Test, using the Holm’s procedure for p-value 
adjustment. 

5. Location of Watchstation 

Watchstation location was broken down into two categories, topside and 

belowdecks, in order to investigate potential differences between participants’ 

Deck Officers

Officers 0.004 -

Reactor 0.020 0.010
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exposure to sunlight while on watch. The topside category includes all 

watchstanders exposed to sunlight while on watch. Table 4 presents the 

summary statistics for age by watchstation location. Figure 21 provides additional 

information about age in regards to watchstation location. As shown in Table 5, 

there is a statistically significant difference in age between watchstation locations 

(p-value = 0.03). 

 

Figure 21.  Boxplot of age delineated by watchstation location. 

Figure 22 shows the distribution of watchstanding location by department, 

with only belowdecks watchstanders in the Reactor Department, since all 

Reactor Department watchstations are located in the engine room on the lower 

decks of the ship. Nine of the 11 (82%) officer participants stood watch topside. 

The Deck Department was nearly evenly split, with three topside and four 

belowdecks watchstanders. Based on the Pearson’s Chi-squared Test with 

simulated p-value (  = 0.05, replications = 10,000), the difference in the 

proportion of participants standing watch topside and belowdecks between 

departments was statistically significant (p-value = 0.0003), indicating that a 
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greater proportion of officers stood watch topside and a greater proportion of 

Reactor Department personnel stood watch belowdecks. 

 

Figure 22.  Bar plot of watchstanding location delineated by department. 

6. Epworth Sleepiness Scale 

ESS scores greater than 10 are considered elevated and those less than 

or equal to 10 are considered to be normal, as described in Chapter II, Section 

H.2. The overall distribution of ESS scores, as shown in Figure 23, appears to be 

somewhat normally distributed. The Shapiro-Wilk Test for normality (  = 0.05) 

suggests that it is reasonable to assume that the ESS scores are normally 

distributed (p-value = .55); however, normality was not assumed in subsequent 

analyses. The number of participants with normal and elevated ESS scores was 

17 and 15, respectively. 
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Figure 23.  Distribution of ESS scores for all 32 participants. 

In order to gain better insight into any potential differences in ESS scores 

among the different demographic groups, ESS scores were examined according 

to age, gender, commissioning status, department, watch location, and CSM-

determined chronotype. The summary statistics for ESS scores are displayed in 

Table 7. Table 8 presents the two-tailed p-value and the name of the statistical 

test used for each of the tests of statistical significance conducted, with regard to  

ESS score, for the different variables of interest. 

 

Table 7.   Summary statistics for ESS score (n = 32). 

Mean Median Range Std Dev Skewness Kurtosis Confidence Interval (95%)

All Participants 10.5 10.0 [2, 23] 4.3 0.44 3.6 [9.0, 12.0]

Male 10.4 10.0 [2, 23] 4.4 0.60 4.3 [7.5, 15.0]

Female 10.9 11.0 [5, 17] 4.6 –0.20 1.7 [8.5, 12.0]

Enlisted 11.6 12.0 [5, 23] 4.0 0.80 4.5 [10.0, 13.0]

Officer 8.3 8.3 [2, 16] 4.3 0.40 2.2 [5.0, 11.0]

Reactor 11.6 12.0 [5, 23] 4.2 1.20 4.2 [9.0, 13.5]

Deck 11.6 13.0 [5, 17] 3.9 –0.37 2.4 [7.0, 15.5]

Belowdecks 10.9 11.0 [4, 23] 4.6 0.70 3.7 [8.5, 13.0]

Topside 9.8 10.0 [2, 16] 4.0 0.34 2.4 [7.0, 12.5]

Morning Type 12.6 13.0 [8, 16] 2.6 –0.60 2.6 [9.5, 15.0]

Intermediate Type 9.9 10.0 [2, 23] 4.6 0.80 3.9 [8.0, 11.5]
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Table 8.   P-value results and the name of the statistical test used for 
determining statistical significance (  = 0.05), with regard to the ESS 

score, for the variables of interest. 

a. Age 

As shown in Figure 24, as participant age increased, ESS scores tended 

to decrease. The red line is a linear regression, which shows a slight negative 

correlation (   = –0.29) between age and ESS score. The green curve is a 

nonparametric “lowess” smoother, a method of locally-weighted polynomial 

regression. The green curve shows that as age increased, ESS score may 

decrease at a greater rate. A Spearman Rank Correlation Coefficient Test (  = 

0.05) gives a normally approximated p-value = 0.11, indicating weak evidence of 

a slight negative correlation between ESS score and age. This finding was 

unusual, as Epworth scores generally increase with age (i.e., people experience 

more daytime sleepiness as they age) (Gander, Marshall, Harris, & Reid, 2005). 

However, this finding is explained in the next section, which compares officer and 

enlisted ESS score. 

p-value (2-tailed) Type of Test Statistically Significant?

Gender 0.65 Wilcoxon Rank Sum No

Commissioning Status 0.05 Wilcoxon Rank Sum Yes

Department 0.13 Kruskal-Wallis Rank Sum No

Watchstation Location 0.65 Wilcoxon Rank Sum No

CSM 0.07 Wilcoxon Rank Sum No
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Figure 24.  Scatter plot of ESS score and age with a linear regression (red) and 
a nonparametric lowess regression (green) of ESS as a function of 

age. 

b. Commissioning Status 

The summary statistics for ESS scores for enlisted sailors and officers are 

displayed in Table 7. Figure 25 provides additional information about ESS scores 

according to commissioning status. As shown in Table 8, the difference in scores 

between enlisted and officer groups was statistically significant, as officers 

tended to experience less daytime sleepiness than enlisted sailors. Additional 

results explaining possible reasons for this difference are presented in 

subsequent sections. 
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Figure 25.  Box plot of ESS scores by commissioning status. 

Table 9 displays the number of enlisted and officers with elevated and 

normal ESS scores. There were a greater proportion of officers with normal ESS 

scores (73%) than enlisted (43%), which is not surprising, based on the 95% 

confidence intervals for the medians of enlisted and officer scores. Based on the 

Pearson’s Chi-squared Test with simulated p-value (based on 10,000 

replications,   = 0.05), however, the difference in the proportion of officers and 

enlisted with elevated and normal ESS scores was not statistically significant (p-

value = 0.15). 

  

Table 9.   The number of enlisted and officers with normal and elevated ESS 
scores. 

Because both the ESS scores and ages of officer and enlisted sailors 

were significantly different, ESS score as a function of age, with officer and 

enlisted personnel separated, was also examined. Figure 26 is a plot of ESS 

Elevated Normal

Enlisted 12 9

Officer 3 8
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scores as a function of age, with enlisted and officer scores identified. Linear 

regressions for both officer (red) and enlisted (green) are plotted as well. 

Interestingly, the regressions are non-overlapping and have nearly opposite 

slopes in the range of ages between 18 and 35. Even though officers tended to 

be older than enlisted personnel in this sample, officers tended to have lower 

ESS scores. The effect of officers being older, yet having lower ESS scores, at 

least partially explains the weak overall negative correlation between age and 

ESS scores. For both officers and enlisted, however, there was not enough 

evidence to conclude that a statistically significant correlation existed between 

ESS score and age, as verified by Spearman Rank Correlation Tests (  = 0.05), 

resulting in   = 0.05 and a normally approximated p-value = 0.89 for officers and 

  = –0.06 and a normally approximated p-value = 0.78 for enlisted sailors. 

 

Figure 26.  Scatter plot of ESS score as a function of age with separate linear 
regression fits for enlisted sailors (green) and officers (red). 
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c. Epworth Sleepiness Scale and Composite Scale of 
Morningness 

The summary statistics for ESS scores according to CSM-determined 

chronotype are displayed in Table 7. Figure 27 provides additional information 

about ESS scores according to chronotype. The variability of the ESS scores for 

intermediate-type participants is higher than that of morning-type participants, 

although the difference in variability could simply be a function of the small 

number of morning-type participants. As shown in Table 8, there is statistical 

evidence of a difference in ESS scores between chronotypes at only the 0.07 

level. 

 

Figure 27.  Box plot of Epworth score, delineated by CSM-determined 
chronotype. 

Table 10 displays the number of participants with elevated and normal 

ESS scores by chronotype. Six of seven (86%) morning-type participants 

reported elevated Epworth scores. The majority of intermediate-type participants 

(64%) reported normal ESS scores. Based on the Pearson’s Chi-squared Test, 
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with simulated p-value (based on 10,000 replications,   = 0.05), the difference in 

the proportion of participants with elevated and normal Epworth scores between 

intermediate- and morning-types is statistically significant (p-value = 0.03). 

 

Table 10.   Number of participants with elevated and normal ESS scores, 
grouped by chronotype. 

A morning chronotype participant in this study was more likely to have an 

elevated ESS score, while a participant with an intermediate chronotype is more 

likely to have a normal ESS score. This result is comparable to past studies that 

found later chronotypes (i.e., intermediate or evening type) usually have a higher 

shiftwork tolerance, as their sleep-wake behavior is less rigid (i.e., show greater 

circadian flexibility) than earlier types and they accumulate less sleep debt during 

a shiftwork cycle (Duffy, Dijk, Hall, & Czeisler, 1999; Foster & Kreitzman, 2004; 

Harma, Tenkanen, Sjoblom, Alikoski, & Heinsalmi, 1998; Ostberg, 1973). 

Accumulating less sleep debt corresponds to less daytime sleepiness and lower 

ESS scores. This result suggests two important issues: (1) individuals with 

greater circadian flexibility (i.e., individuals with intermediate chronotype) 

experience less daytime sleepiness in naval operational environments; and (2) 

individuals’ chronotypes in operational units could be a tool for identifying officers 

and sailors with greater susceptibility to sleep-induced fatigue, thus providing the 

command and individuals with a greater awareness of their sleep needs. These 

results warrant further research in follow-on studies. 

7. Composite Scale of Morningness 

The different categories of chronotype and their relationship to CSM score 

are described in Chapter I, Section G. Although, at   = 0.05, the Shapiro-Wilk 

Test for normality (p-value = 0.19) does not provide evidence that CSM scores 

Elevated ESS Normal ESS

Morning Type 6 1

Intermediate Type 9 16
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are not normally distributed, the distribution of CSM scores in Figure 28 does not 

appear normal. Hence, it should not be assumed that CSM scores are normally 

distributed in this analysis. Overall, 25 participants were intermediate type and 

seven were morning type, while none were evening type. 

 

Figure 28.  Distribution of CSM scores for all participants. 

In order to gain better insight into any potential differences in CSM scores 

among different demographic groups, CSM scores were examined according to 

age, gender, commissioning status, department, and watchstation location. The 

summary statistics for CSM scores are displayed in Table 11. Table 12 presents 

the two-tailed p-value and the name of the statistical test used for each of the 

tests of statistical significance conducted, with regard to CSM score, for the 

different variables of interest. 
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Table 11.   Summary statistics for CSM score (n = 32). 

 

Table 12.   P-value results and the name of the statistical test used for 
determining statistical significance (  = 0.05), with regard to CSM 

score, for the variables of interest. 

a. Age 

As shown in Figure 29, there was little relationship between age and CSM 

score. The red line is a linear regression, which shows that no correlation (   = –

0.08) existed between age and CSM score. The green lowess smoother shows 

that CSM score initially decreased as age increased, but then started to increase 

at around 26 years old. This result is surprising because several studies have 

shown that CSM actually increases as one ages (i.e., a person begins to 

naturally trend toward “morningness”) (Duffy & Czeisler, 2002; Roenneberg, 

Justice, & Merrow, 2003). Subsequent analysis attempts to explain a possible 

reason for the weak correlation between CSM score and age. 

Mean Median Range Std Dev Skewness Kurtosis Confidence Interval (95%)

All Participants 36.6 35.0 [25, 52] 7.1 0.3 2.1 [33.5, 39.0]

Male 36.2 34.0 [25, 48] 6.6 0.3 1.9 [32.5, 39.0]

Female 37.9 38.0 [25, 52] 9.2 0.1 2.0 [28.0, 46.5]

Enlisted 35.3 34.0 [26, 48] 6.5 0.6 2.3 [32.0, 38.5]

Officer 38.9 41.0 [25, 52] 7.8 –0.2 2.3 [33.0, 44.0]

Reactor 33.6 31.5 [26, 48] 6.5 1.2 3.4 [29.5, 38.0]

Deck 38.9 38.0 [32, 46] 5.3 0.2 1.6 [33.5, 45.5]

Belowdecks 34.7 33.5 [25, 48] 6.7 0.1 2.0 [31.0, 38.0]

Topside 39.8 40.5 [31, 52] 6.8 0.6 2.3 [35.5, 45.0]

p-value (2-tailed) Type of Test Statistically Significant?

Gender 0.68 Wilcoxon Rank Sum No

Commissioning Status 0.25 Wilcoxon Rank Sum No

Department 0.08 Kruskal-Wallis Rank Sum No

Watchstation Location 0.07 Wilcoxon Rank Sum No
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Figure 29.  Scatter plot of CSM score and age with a linear regression (red) and 
a nonparametric lowess regression (green) of CSM score as a 

function of age. 

Linear regression fits of CSM score as a function of age for both officer 

(red) and enlisted (green) are plotted in Figure 30. For officers, the Spearman 

Rank Correlation Test (  = 0.05), with   = –0.03 and normally approximated p-

value = 0.93, indicated that there was no statistical correlation between CSM 

score and age. On the other hand, for enlisted sailors, the Spearman Rank 

Correlation Test (  = 0.05), with   = –0.48 and normally approximated p-value 

= 0.03, indicated that there was a negative statistical correlation between CSM 

score and age. 
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Figure 30.  Plot of CSM scores as a function of age, with separate linear 
regression fits for officers (red) and enlisted sailors (green). 

The conflicting results of CSM scores (i.e., strongly decreasing with age 

for enlisted sailors and having no relationship with age for officers) may have 

accounted for the overall weak correlation between age and CSM score. 

Additionally, the negative correlation between age and CSM score for enlisted 

participants is unusual in that CSM score, after reaching an eveningness trough 

in early adulthood, tends to increase with age (Carrier, Monk, Buysse, & Kupfer, 

1997). In this thesis, however, although most young enlisted personnel tended to 

be intermediate type, they were closer to being morning than evening type. 

Furthermore, older enlisted sailors’ CSM scores tended to be closer to the center 

of the intermediate-type category range. Perhaps this suggests some form of 

psychological conditioning that occurs over time, influencing one to believe they 

are intermediate chronotype when they truly are not. This phenomenon is 

referred to as cognitive dissonance reduction, or the attempt to reduce 

psychological discomfort in order to reestablish internal consistency (Festinger, 

1962). Another possible explanation is that people of intermediate chronotype 
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are simply more likely to remain in the Navy, while those of other chronotypes, 

with less circadian flexibility, are unable to adapt to the rotating sleep and work 

schedules used in an operational unit. As a result, individuals with morning and 

evening chronotypes may decide to get out of the Navy earlier in their careers. 

This attrition effect may be more prevalent with enlisted sailors because they 

assume more arduous rotating shift schedules, with greater frequency, than 

officers. 

b. Department 

The summary statistics for CSM scores for each department are displayed 

in Table 11. Figure 31 provides additional information for CSM scores according 

to department. As shown in Table 12, the difference in CSM score between 

departments is significant at only the p-value = 0.08 level. 

 

Figure 31.  Boxplot of CSM score, delineated by department. 

One possible explanation for the weak statistical difference in CSM score 

between watchstation location and departments is that all Reactor Department 

watchstanders stood watch belowdecks and received only artificial light 
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exposure. Thus, perhaps as a result of losing the natural zeitgeber of daylight, 

participants in the Reactor Department attempted to psychologically adapt 

through cognitive dissonance reduction in order to make them feel as if they had 

less of a propensity toward either the morning or evening extremes. Another 

possible explanation will be explored in the next section, which examines CSM 

score and watchstation location. In future studies, a designed experiment 

approach should be used to further investigate this finding. 

c. Location of Watchstation 

The summary statistics for CSM scores for belowdecks and topside 

watchstanders are displayed in Table 11. Figure 32 provides additional 

information about CSM scores according to watchstation location. As shown in 

Table 12, the difference in CSM scores between watchstation locations was 

statistically significant at the p-value = 0.07 level. 

 

Figure 32.  Boxplot of CSM scores, delineated by watchstation location. 
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This result suggests that exposure to sunlight while on watch may have an 

effect on one’s circadian entrainment. Several studies have shown that the 

human circadian clock is predominantly entrained by sun time, rather than social 

time cues (Roenneberg, Daan, & Merrow, 2003; Roenneberg & Kumar, 2007; 

Wright et al., 2013). Thus, when the circadian clock becomes uncoupled from 

sun time, the overall zeitgeber strength is reduced, which leads to later 

chronotypes (Roenneberg & Kumar, 2007). This hypothesis at least partially 

explains the lower CSM scores (more toward eveningness) associated with the 

belowdecks watchstanders and the Reactor Department. These results warrant 

further investigation in follow-on studies. 

C. ANALYSIS OF ACTIGRAPHY DATA 

Average daily sleep for 32 participants was examined with respect to age, 

gender, commissioning status, department, watchstation location, and ESS and 

CSM scores. Day-to-day sleep (each 24-hour period) was examined in order to 

determine potential differences in sleep consistency between participants and 

departments, and to investigate any day-of-the-week effects on participant sleep. 

Exact confidence intervals are provided in the table of summary statistics in the 

following sections for the median of the average daily sleep according to the 

variables of interest for that section as calculated by Wilcoxon Signed Rank 

Tests, unless otherwise noted. Additionally, all Wilcoxon Rank Sum Tests 

provide exact p-values. 

1. Average Daily Sleep 

Figure 33 displays a histogram of average daily sleep for the 32 

participants. The data appear to be somewhat normally distributed. Based on the 

Lilliefors Normality Test (  = 0.05), there is not enough evidence to conclude 

that the data is non-normally distributed (p-value = 0.11). Due to the relatively 

small sample size and the heavy tails of the Normal Quantile-Quantile (Q-Q) plot 

shown in Figure 34, however, non-normality is more likely and average daily 

sleep was not assumed to have a normal distribution. 
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Figure 33.  Histogram of average daily sleep for all 32 participants. 

 

Figure 34.  Normal Q-Q plot of average daily sleep data for all 32 participants. 

In order to gain better insight into any potential differences among different 

demographic groups, average daily sleep was examined according to age, 

gender, commissioning status, department, and watchstation location. Average 
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daily sleep was also analyzed with regard to chronotype and ESS category. The 

summary statistics for average daily sleep are displayed in Table 13. Table 14 

presents the two-tailed p-value and the name of the statistical test used for each 

of the tests of statistical significance conducted, with regard to average daily 

sleep, for the different variables of interest. 

 

Table 13.   Summary statistics for average daily sleep (hours per day) (n = 32). 

 

 

Table 14.   P-value results and the name of the statistical test used for 
determining statistical significance (  = 0.05) for average daily sleep 

for the variables of interest. 

a. Epworth Sleepiness Scale 

The summary statistics for average daily sleep by ESS category are 

displayed in Table 13. Figure 35 provides additional information about the 

average daily sleep of participants in the different ESS categories. As shown in 

Mean Median Range Std Dev Skewness Kurtosis Confidence Interval (95%)

All Participants 6.7 6.7 [4.5, 9.2] 1.1 0.20 3.0 [6.3, 7.1]

Male 6.6 6.5 [4.5, 9.2] 1.2 0.40 2.9 [6.1, 7.0]

Female 7.1 6.9 [6.0, 8.1] 0.7 0.02 1.9 [6.4, 7.9]

Enlisted 6.5 6.7 [4.5, 8.3] 1.0 –0.20 2.5 [6.0, 7.0]

Officer 7.1 6.9 [5.2, 9.2] 1.2 0.40 2.3 [6.4, 8.0]

Reactor 6.4 6.5 [4.5, 8.3] 0.9 0.01 4.0 [6.0, 6.8]

Deck 6.7 7.0 [4.8, 8.1] 1.4 –0.60 1.8 [4.8, 7.9]

Belowdecks 6.5 6.7 [4.5, 8.3] 0.9 –0.50 3.3 [6.1, 6.9]

Topside 7.1 6.8 [4.8, 9.2] 1.4 2.00 0.9 [6.2, 8.0]

Morning Type 5.9 5.7 [4.5, 8.1] 1.3 0.60 2.3 [4.8, 7.3]

Intermediate Type 6.9 6.9 [4.8, 9.2 1.0 0.50 3.4 [6.5, 7.3]

Elevated ESS 6.2 6.4 [4.5, 8.1] 1.1 0.01 2.2 [5.6, 6.7]

Normal ESS 7.2 6.9 [5.7, 9.2] 1.0 0.70 2.6 [6.6, 7.7]

p-value (2-tailed) Type of Test Statistically Significant?

Gender 0.30 Wilcoxon Rank Sum No

Commissioning Status 0.20 Wilcoxon Rank Sum No

Department 0.30 Kruskal-Wallis Rank Sum No

Watchstation Location 0.40 Wilcoxon Rank Sum No

ESS 0.01 Wilcoxon Rank Sum Yes

CSM 0.04 Wilcoxon Rank Sum Yes
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Table 13 and Table 14, participants with normal ESS scores received statistically 

significantly more average daily sleep than those with elevated ESSs. 

 

Figure 35.  Average daily sleep by ESS category. 

This finding is consistent with a prior study conducted by Shattuck and 

Matsangas (2014) which found that ESS scores were related to the amount of 

daily sleep and mean reaction time, as measured by PVT. Because the ESS 

questionnaire is simple and takes only two to three minutes to administer, yet can 

accurately identify individuals suffering from sleep deprivation, it provides a 

unique tool that naval units can employ to identify at-risk individuals. Thus, sleep 

countermeasures can be efficiently and expeditiously administered to those 

suffering from sleep-induced fatigue without the need for issuing costly 

actigraphy devices to all personnel in operational units. 

b. Composite Scale of Morningness 

The summary statistics for average daily sleep according to CSM-

determined chronotype are displayed in Table 13. Figure 36 provides additional 
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information about average daily sleep based on chronotype. As shown in Table 

14, the difference in average daily sleep between participants of morning and 

intermediate chronotype was statistically significant. 

 

Figure 36.  Average daily sleep by CSM-determined chronotype. 

Participants in this study with a morning chronotype tended to receive less 

sleep than participants with an intermediate chronotype. This finding suggests 

that individuals with greater circadian flexibility (i.e., those with intermediate 

chronotypes) are more likely to receive a greater amount of average daily sleep 

in Navy operational environments. The statistically significant difference in 

average daily sleep between intermediate- and morning-type participants is 

consistent with past studies that found later chronotypes usually have a higher 

shiftwork tolerance, as their sleep-wake behavior is less rigid than earlier types, 

and that they accumulate less sleep debt during a shiftwork cycle (Duffy, Dijk, 

Hall, & Czeisler, 1999; Foster & Kreitzman, 2004; Harma, Tenkanen, Sjoblom,  
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Alikoski, & Heinsalmi, 1998; Ostberg, 1973). However, participants with 

intermediate chronotypes still experienced sleep deprivation during the course of 

this study. 

2. Day-to-Day Sleep 

The day-to-day sleep of participants was investigated in order to gain 

additional insight into their sleep habits. Furthermore, analyzing day-to-day sleep 

provided for an investigation of the variability of each participant’s daily sleep not 

yet accounted for by the average daily sleep analysis. A “day,” for the purposes 

of this analysis, was considered as 0000-2359. Since the study was executed 

during three different, but overlapping periods, each period was analyzed 

separately and then compared, in order to determine any possible differences or 

similarities between the different periods. The three different periods, August 26-

September 10, September 4-September 16, and September 11-September 23, 

are referred to as Periods 1, 2, and 3, respectively. Period 1 consisted of 

participants from the Reactor Department and one officer standing watch in the 

reactor plant spaces; Period 2 consisted of only officers; and Period 3 consisted 

of enlisted sailors in the Deck Department. Because not all participants 

participated in the study for the same number of days, each period was 

standardized so that the maximum number of participants and the maximum 

number of days could be considered for each period. Participant 23 was removed 

from this portion of the analysis, due to participating in the study for fewer days 

than all other participants. Thus, 31 participants were included in the analysis of 

day-to-day sleep. 

a. Period 1 

Period 1 consisted of mainly enlisted sailors from the Reactor Department. 

One officer participated during this period, but stood watch in the reactor plant 

spaces and followed a 5ON/15OFF watch schedule. Fifteen crewmembers 

participated in Period 1. During this period, the ship conducted flight operations 

while transiting the Arabian Sea and transited Bab el-Mandeb Strait into the Red 
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Sea in order to support U.S. national interests in the Middle East. The Reactor 

Department, as discussed in Chapter IV, Section B, used a four-section 

5ON/15OFF watch schedule, carried out training several times per week, and 

executed drills at least five nights per week between 0200 and 0700. Sunday 

was generally designated as an “off” day when the department followed a 

“holiday” routine. This general schedule is considered standard for aircraft carrier 

reactor departments while deployed at sea. 

The day-to-day sleep of each participant was investigated. A plot similar to 

that shown for Participant 6, in Figure 37, was generated for each participant 

(see Appendix F for plots for all other participants). Clearly this sailor’s day-to-

day sleep was highly inconsistent. Nearly all of the participants experienced 

inconsistent day-to-day sleep throughout the study period; however, additional 

insight can be gained by investigating the variance of participants’ daily sleep. 

 

Figure 37.  Day-to-day sleep of Participant 6. 
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As shown in Figure 38, the variability in day-to-day sleep for each 

participant was large and the day-to-day sleep of some participants, most notably 

ID12 and ID13, appears to vary much less than the other participants during this 

period. However, when comparing the day-to-day sleep of the 15 participants 

from Period 1, according to the Fligner-Killeen Test of Homogeneity of Variances 

(  = 0.05), there is not enough evidence to conclude that the variances of the 

participants’ daily sleep were statistically different (p-value = 0.49). 

 

Figure 38.  Variance of day-to-day sleep for participants of Period 1. 

Of note, ID12 was the only officer that participated during Period 1 and 

ID13 was a Petty Officer First Class Machinist’s Mate (Nuclear). The officer did 

not have any collateral duties or responsibilities, while the petty officer was the 

Leading Petty Officer of one of the two Reactor Mechanical Divisions, a key 

enlisted leadership position within the Reactor Department. Additionally, both 

stood supervisory watches. Interestingly, ID12 slept, on average, 7 hours per 

day, while ID13 slept only 5.7 hours per day. Thus, even though both participants 
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experienced relatively consistent sleep compared to the other participants during 

Period 1, ID13 slept over 1.25 hours less per night than ID12. Additionally, ID7, a 

Petty Officer Third Class Machinist’s Mate (Nuclear), whose day-to-day sleep 

varied tremendously, received the greatest average daily sleep, 8.3 hours, of all 

Period 1 participants. 

Figure 39 displays average daily sleep as a function of the variance of 

each participant’s day-to-day sleep. The red lowess fit shows that average daily 

sleep is relatively constant as a function of the variance of day-to-day sleep. 

Based on a Spearman Rank Correlation Test (  = 0.05) with   = –0.09 and p-

value = 0.76, there is not enough evidence to conclude that a statistical 

correlation existed between average daily sleep and sleep consistency. Sleep 

consistency had little effect on the actual amount of daily sleep participants 

received during Period 1. Regardless of the inconsistent nature of sailor sleep, 

most participants received not only too little sleep, but experienced large 

fluctuations in their day-to-day sleep. Furthermore, in an attempt to recover from 

severe bouts of sleep debt, many participants relied upon “binge sleeping,” or 

sleep periods in excess of 8-9 hours. 
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Figure 39.  Scatter plot of average daily sleep as a function of the variance of 
day-to-day sleep for Period 1.  

Figure 40 displays the average day-to-day sleep of the participants of 

Period 1. Each point represents the average sleep of the 15 participants for that 

day. This plot visually illustrates the lack of pattern, or trend, in the average sleep 

of the Reactor Department. Of note, on two occasions, Monday, August 26 and 

Saturday, August 31, the participants averaged less than five hours of sleep. This 

indicates that the participants, as a whole, experienced severe sleep deprivation 

during these two days. 
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Figure 40.  Average day-to-day sleep of the 15 participants of Period 1. 

Also of significance was the substantially greater amount of average sleep 

the participants received on Sunday. Based on a Kruskal Wallis Rank Sum Test (

  = .05), there was a day-of-the-week effect in the day-to-day sleep of the 

participants of Period 1 (p-value = 0.003). There was a statistically significant 

difference between the days of the week with regard to the average amount of 

sleep that the participants received. Based on a pairwise Multiple Comparison 

Wilcoxon Rank Sum Test using the Holm’s p-value adjustment procedure (family-

wide   = 0.05), there was strong statistical evidence to conclude that a 

difference in the average sleep of participants existed between Sunday and 

Monday, Sunday and Tuesday, and Sunday and Saturday. Table 15 displays the 

p-values for all of the pairwise comparisons. 
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Table 15.   P-values of all pairwise comparisons for the average sleep of the 15 
participants with regard to the day of the week. The  
p-values of significance are highlighted in orange. 

The results of Period 1 suggest the following four critical issues: (1) in an 

operational aircraft carrier’s Reactor Department, day-to-day sleep is highly 

inconsistent; (2) there is little connection between sleep consistency and the 

average daily sleep of Reactor Department personnel; (3) the Reactor 

Department routinely forced participants into severe sleep debt multiple times per 

week; and (4) the Reactor Department, in following a “holiday” routine on 

Sunday, relied upon Sunday as a day for its personnel to recover from a week of 

sleep deprivation. Participants were often going 24–48 hours with little to no 

sleep, and then were “binge sleeping” in excess of 8–9 hours in an attempt to 

recuperate. As shown by several studies, however, a single sleep episode in 

excess of 8–9 hours is not enough to fully recover from several days of sleep 

deprivation (Belenky et al, 2003; Dinges et al., 1997; Van Dongen, Maislin, et al., 

2003; Van Dongen, Rogers, et al., 2003). The study conducted by Belenky et al. 

(2003) at the WRAIR showed that three days of recuperative sleep was still not 

enough to recover the performance decrements suffered as a result of sleep 

deprivation. Thus, participants in Period 1 were certainly experiencing sleep 

deprivation and chronic sleep debt, while they were also not being provided an 

opportunity to adequately recuperate. These consequences pose severe health 

and safety risks to the Reactor Department of the USS Nimitz. 

Friday Monday Saturday Sunday Thursday Tuesday

Monday 1.00 - - - - -

Saturday 1.00 1.00 - - - -

Sunday 0.28 0.01 0.02 - - -

Thursday 1.00 1.00 1.00 0.40 - -

Tuesday 1.00 1.00 1.00 0.02 1.00 -

Wednesday 1.00 1.00 1.00 0.09 1.00 1.00
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b. Period 2 

Period 2 consisted of eight officers standing watch on the bridge as Officer 

of the Deck (OOD), Junior Officer of the Deck (JOOD), or Junior Officer of the 

Watch (JOOW) and one officer standing watch in the Combat Information Center 

(CIC). During Period 2, the ship operated in the Red Sea in order to support U.S. 

national interests in the Middle East. Officers standing bridge and CIC watches, 

as discussed in Chapter IV, Section B, used a six-section 4ON/20OFF watch 

schedule. Two of the officers were Division Officers and one was a Department 

Training Officer, while the rest had no collateral duties. 

The day-to-day sleep of each participant was investigated. A plot similar to 

that shown for Participant 20, in Figure 41, was generated for each participant. 

As compared to the participants of Period 1, the day-to-day sleep of those in 

Period 2 seemed to be less variable overall. Some participants in Period 2, 

however, experienced consistent sleep, while the day-to-day sleep of others 

varied widely. Additional insight was gained by investigating the variance of 

participants’ daily sleep. 
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Figure 41.  Day-to-day sleep of Participant 20. 

As shown in Figure 42, the variability in the day-to-day sleep for some 

participants was large and, for some participants, most notably ID20 and ID21, 

day-to-day sleep appears to vary much less than that of the other participants. 

Unlike the participants of Period 1, when comparing the day-to-day sleep of the 

nine participants from Period 2, according to the Fligner-Killeen Test of 

Homogeneity of Variances (  = 0.05), the variance of participants’ day-to-day 

sleep was statistically different (p-value = 0.03). In other words, the consistency 

of day-to-day sleep for the participants of Period 2 was different. Some officers’ 

sleep varied widely on a daily basis, while others received relatively consistent 

day-to-day sleep. 
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Figure 42.  Variance of day-to-day sleep for participants from Period 2. 

Of note, ID20 was a Division Officer in the Operations Department, a key 

leadership position, while ID21 did not have any collateral duties. Furthermore, 

ID20 averaged 7.2 hours of sleep per day, while ID21 averaged only 6.6 hours. 

Thus, even though both participants experienced relatively consistent sleep as 

compared to others in Period 2, ID20 slept nearly 40 minutes longer, on average, 

than ID21. Yet, ID19—an officer who stood JOOD on the Bridge and did not have 

a collateral duty, averaged 8.9 hours of sleep per day, the second most of any 

participant in the entire study across all periods—experienced the second most 

inconsistent sleep out of all the participants in Period 2. 

Figure 43 displays average daily sleep as a function of the variance of 

each participant’s day-to-day sleep. The red lowess fit shows that average daily 

sleep is relatively constant as a function of the variance of day-to-day sleep. 

Based on a Spearman Rank Correlation Test (  = 0.05), with   = 0.10 and p-

value = 0.81, there is not enough evidence to conclude that a correlation existed 
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between average daily sleep and sleep consistency. Sleep consistency had little 

effect on the actual amount of daily sleep that sailors received in Period 2. 

 

Figure 43.  Scatter plot of average daily sleep as a function of participant day-to-
day sleep variance for Period 2. 

Figure 44 displays the average day-to-day sleep of the participants of 

Period 2. Each point represents the average sleep of the nine participants for that 

day. Although the average sleep of the participants in Period 2 changed 

substantially day-to-day, it appears to do so less than that for the participants in 

Period 1. Based on the one-tailed Mood Test for Equality of Variance (  = 0.05), 

there is strong statistical evidence to conclude that the day-to-day sleep of 

participants from Period 1 is more variable (less consistent) than that of 

participants from Period 2 (p-value = 0.03). This result suggests that officers, 

often given more autonomy and control of their own daily schedule, experienced 

greater consistency in their daily sleep. Although, the average daily sleep of 

officers was not statistically significantly greater than that of the sailors in the 
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Reactor Department, having greater control over one’s schedule (including sleep) 

may have contributed to more consistent day-to-day sleep. 

 

Figure 44.  Average day-to-day sleep of the nine participants from Period 2. 

As shown in Figure 44, although on the first Sunday, 8 September, the 

average sleep of officers in Period 2 was over an hour greater than any other 

day, there was not a day-of-the-week effect as there was in Period 1. Based on a 

Kruskal-Wallis Rank Sum Test (  = 0.05) there was not enough evidence to 

conclude that participant daily sleep was affected by the day of the week (p-value 

= 0.11). As there was a day-of-the-week effect in Period 1, the lack of a day-of-

the-week effect for Period 2 suggests two possible issues: (1) officers were not 

routinely provided the opportunity to sleep more on Sundays (or any other day of 

the week); and (2) the need for recuperative sleep among officers was less; thus, 

even if provided the opportunity to sleep more, they did not feel the need to do 

so. 
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c. Period 3 

Period 3 consisted of only enlisted sailors from the Deck Department. 

Seven crewmembers participated in Period 3. During Period 3, the ship operated 

in the Red Sea in order to support U.S. national interests in the Middle East. The 

sailors stood watch either on the bridge or belowdecks and, as discussed in 

Chapter IV, Section B, used a three-section 5ON/10OFF watch schedule. 

The day-to-day sleep of each participant was investigated. A plot similar to 

that shown for Participant 31, in Figure 45, was generated for each participant. 

As compared to the participants of Periods 1 and 2, the day-to-day sleep of the 

participants in Period 3 appears to be similar to that of sailors from Period 1; 

however, additional insight was gained by investigating the variance of 

participants’ daily sleep. 

 

Figure 45.  Day-to-day sleep of Participant 31. 
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As shown in Figure 46, while the variability of some participants’ day-to-

day sleep was small, others were relatively large. The participants were all 

Seaman Boatswain’s Mates and below, thus sailors of Period 3 were the most 

homogeneous group out of the three periods with regard to age, rank, military 

experience, and daily schedule. Unlike the participants of Period 1, however, 

when comparing the day-to-day sleep of the seven participants from Period 3, 

according to the Fligner-Killeen Test of Homogeneity of Variances (  = 0.05), 

the variance of participants’ day-to-day sleep was statistically different (p-value = 

0.01). Thus, even though the daily schedules of each of the sailors in Period 3 

were similar, the consistency of their day-to-day sleep was different. This finding 

suggests that even though sailors may be provided the same amount of time to 

sleep each day, the consistency of their day-to-day sleep may still be different. 

Every person is different with regard to sleep and this should be taken into 

account by supervisors in operational units. 

 

Figure 46.  Variance of day-to-day sleep for participants from Period 3. 
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Figure 47 displays average daily sleep as a function of the variance of 

each participant’s day-to-day sleep. The red lowess fit shows that average daily 

sleep as a function of the variance of day-to-day sleep varied widely. However, 

this can most likely be attributed to the small number of data points. Based on a 

Spearman Rank Correlation Test (  = 0.05), with   = 0.21 and p-value = 0.70, 

there was not enough evidence to conclude that a correlation existed between 

average daily sleep and sleep consistency. Sleep consistency had little effect on 

the actual amount of sleep that sailors received in Period 3. 

 

Figure 47.  Scatter plot of average daily sleep as a function of participant day-to-
day sleep variance for Period 3. 

Figure 48 displays the average day-to-day sleep of the participants of 

Period 3. Each point represents the average sleep of the seven participants for 

that day. Although the average sleep of the participants in Period 3 changed 

substantially day-to-day, it appears to do so less than that for the participants in 

Periods 2 and 3. Based on Mood Tests for Equality of Variance (  = 0.05) 

between Periods 1 and 3 and Periods 2 and 3, there is not enough evidence to 
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conclude that the consistency in participant sleep is different between the periods 

(p-value for Periods 1 and 3 is 0.34 and the p-value for Periods 2 and 3 is 0.84). 

 

Figure 48.  Average day-to-day sleep of the seven participants from Period 3. 

Although on the first Sunday, 14 September, the average sleep of the 

sailors in Period 3, as shown in Figure 48, was higher than all other days during 

the period, there was not a day-of-the-week effect as there was during Period 1. 

Based on a Kruskal-Wallis Rank Sum Test (  = 0.05), there was not enough 

evidence to conclude that participant daily sleep was affected by the day of the 

week (p-value = 0.54). Since there was a day-of-the-week effect in Period 1, the 

lack of a day-of-the-week effect for Period 3 suggests two issues: (1) the need for 

recuperative sleep among the sailors in the Deck Department was less; thus, 

even if provided the opportunity to sleep more, they did not feel the need to do 

so; and (2) sailors in the Deck Department were not provided with a day to 

recover from sleep debt, unlike sailors in the Reactor Department. Additional 

research is required to further investigate the differences between the 

departments and to explore reasons for potential differences. 
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D. NAVY STANDARD WORKWEEK ANALYSIS 

Participants were asked to complete daily sleep and activity logs 

indicating, for each 15-minute interval of the day, the NSWW category in which 

they were engaged. Both actigraphic sleep and self-reported sleep were included 

in the NSWW analysis. The data from the sleep and activity logs and the 

actigraphic sleep data were compared to the requirements described in CNO 

(2011) in order to determine if the NSWW accurately reflects sailors’ work weeks 

on a deployed aircraft carrier. Due to incomplete sleep and activity logs and 

actigraphy data for some participants, only 26 participants were included in the 

NSWW analysis. Of these 26 participants, 13 were from the Reactor Department, 

3 were from the Deck Department, and 10 were officers. 

1. Comparison of Self-Reported Activities and Actigraphic Sleep 
to the Navy Standard Workweek 

Figure 49 displays the daily self-reported activities and actigraphic sleep of 

Participant 2, a Second Class Petty Officer Electronic’s Technician (Nuclear) in 

the Reactor Department. During the study, Participant 2 stood Instrumentation 

Watch, a watch responsible for monitoring key reactor plant safety equipment, in 

the reactor plant spaces of Reactor Plant Number 1. In addition, Participant 2’s 

collateral duty as “Paperwork Petty Officer” required him to prepare and maintain 

all reactor plant maintenance paperwork for Reactor Plant Number 1, a critical 

and time-intensive job. Participant 2’s watch rotation was five hours on watch and 

15 hours off watch. Figure 50 displays his activities in hours per week in order to 

provide a more direct comparison to the NSWW. Appendix G contains the self-

reported activities and actigraphic sleep, as compared to the NSWW, of all 26 

participants included in the NSWW analysis. 
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Figure 49.  Reported activities and actigraphic sleep of Participant 2 compared to 
the NSWW (hours per day). 

 

Figure 50.  Reported activities and actigraphic sleep of Participant 2 compared to 
the NSWW (hours per week). 
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Only the categories of free time and maintenance/work exceeded the time 

allotted by the NSWW. Time spent in all other categories was less than that 

designated by the NSWW. This sailor spent a tremendous amount of time each 

day doing maintenance and work. Participant 2’s collateral duty clearly 

dominated his daily schedule. Appendix H contains plots illustrating the 

differences between self-reported activities and actigraphic sleep and the 

NSWW-allotted time per category for each of the 26 participants. 

Figure 51 displays the deviation from the NSWW for Participant 2, 

computed as 
 -  ij j

j

SR AL
Deviation

AL
, where 

ijSR  is the time spent by participant 

i in NSWW category j and AL j
 is the allotted time of NSWW category j for i = 

1,…, 26 and j = 1,…, 8. Clearly, the largest deviation was for the category of 

maintenance and work. This participant’s collateral duty, although he was still just 

a Second Class Petty Officer, was demanding and time consuming. The NSWW 

does not take such collateral duties into account when determining the amount of 

time sailors should spend doing work each week. Appendix I contains plots 

illustrating the deviations between self-reported activities and actigraphic sleep 

and the NSWW-allotted time per category for each of the 26 participants. 
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Figure 51.  Deviation between the self-reported sleep and actigraphic sleep and 
the NSWW-allotted time for Sailor 2. 

Figure 52 displays the mean amount of time per day for self-reported 

activities and actigraphic sleep, compared to the allotted time designated by the 

NSWW for the 26 participants. On average, participants exceeded the 

requirements of the NSWW in the following categories: free time, 

maintenance/work, and meetings/service diversion. On the other hand, on 

average, participants fell below the requirements of the NSWW in the following 

categories: sleep, messing, personal time, training, and watch. Figure 53 

displays the mean amount of time per week for self-reported activities and 

actigraphic sleep, compared to the allotted time designated by the NSWW. 



 136 

 

Figure 52.  Average amount of time spent in each category per day, compared to 
the NSWW for the 26 participants. 

 

Figure 53.  Average amount of time spent in each category per week, compared 
to the NSWW for the 26 participants. 
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Figure 54 illustrates the average deviation from the NSWW for the 26 

participants. The greatest deviations were for the categories of free time, 

maintenance and/or work, and meetings/service diversion. The deviation for all 

other NSWW categories was less than 2. 

 

Figure 54.  Average deviation from each category of the NSWW for the 26 
participants. 

The relatively large deviations in the categories of free time, maintenance 

and work, and meetings and service diversion found in this sample of data 

highlight several key concerns with the NSWW. First, participants were doing 

more maintenance and/or work than called for by the NSWW. Second, 

participants were required to attend more meetings and unplanned events 

(service diversions) than called for by the NSWW. Third, participants, on 

average, were spending a significant amount of time engaged in free time. Yet, 

on average, participants were still not meeting the requirements of the NSWW 

with regard to sleep. Thus, a disconnect existed between watch scheduling, 
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maintenance/work requirements, and the time management of sailors. Perhaps 

the combination of a heavy workload, rotating watch schedules that are out of 

sync with the human circadian rhythm, and many unplanned events throughout 

the day made it difficult for sailors to sleep when time was available and 

ultimately hindered their ability to effectively manage their own time. Based on 

this analysis, the current NSWW cannot be considered an effective tool for 

determining manning onboard operational units because it does not accurately 

reflect the demands placed on sailors. 

Figure 55 displays the average deviation by department for the NSWW. 

The deviations for sleep are based on actigraphic sleep. The greatest deviations 

for the departments were in the categories of maintenance/work, 

meetings/service diversion, and free time performed by officers, the Reactor 

Department, and the Deck Department, respectively. The Reactor Department, 

however, also deviated the second most in the maintenance/work and free time 

categories and deviated the most in the training category. In most other 

categories, the departments did not deviate by more than two hours from the 

NSWW. Based on Kruskal-Wallis Rank Sum Tests (  = 0.05) for each of the 

categories, however, there was no statistically significant difference between any 

of the departments for any of the categories (smallest p-value = 0.09). 
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Figure 55.  Average deviation from the NSWW by department (n=26). 

The participants from the Deck Department, consisting of sailors who were 

younger and more junior than participants from the other departments, reported 

the most free time. Additionally, participants from the Reactor Department, also 

tending to be much younger than officer participants, reported a substantial 

amount of free time. As shown in Figure 56, the amount of free time one reported 

tended to decrease as a function of age (   = –0.38). The red lowess smoother in 

Figure 56 and a Spearman Rank Correlation Test (  = 0.05), with a normally 

approximated p-value = 0.07, show a weak statistical negative correlation 

between age and the amount of free time one reported.  
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Figure 56.  Scatter plot of free time (hours per week) and age for the 26 
participants with a nonparametric lowess regression of free time as a 

function of age. 

Table 16 presents the summary statistics for the amount of time that 

participants spent sleeping, completing maintenance and work, and the amount 

of time they spent in available and non-available time. Due to ties in the data, the 

confidence intervals for the medians of actigraphic sleep and maintenance and 

work were calculated by Wilcoxon Signed Rank Tests, using normal 

approximations and no continuity correction. The confidence intervals for the 

medians of available and non-available time were calculatedly exactly. 
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Table 16.   Summary statistics for the mean amount of time participants spent 
sleeping, completing maintenance and work, and in and available 

time and non-available time (hours per week) (n=26). 

Figure 57 displays the amount of time that each sailor spent sleeping each 

week (based on actigraphic sleep), compared to the NSWW. The red and blue 

bars represent the sailors, while the NSWW requirement is displayed by the gold 

horizontal line. The mean weekly sleep is displayed by the green horizontal line. 

The left vertical axis displays the number of hours each sailor spent sleeping per 

week. The sailors that received less sleep than the NSWW allotment are 

represented with red bars, while those sailors that met or exceeded the NSWW 

allotment are represented with blue bars. The purple line with black diamonds 

depicts the cumulative percentage of actigraphic sleep as shown on the right 

vertical axis. Eighty-one percent of the total time slept by all 26 participants is 

contributed by sailors that slept 56 hours or less per week. 

Actigraphic Sleep Maintenance/Work Available Non-Available 

Mean 47.2 32.3 84.2 78.4

Median 47.0 30.7 83.0 79.7

Range [31.6, 64.7] [0, 87.23] [46.8, 114.6] [52.2, 102.5]

Standard Deviation 7.1 23.4 17.2 14.9

Skewness 0.3 0.4 –0.1 –0.3

Kurtosis 3.5 2.6 2.5 2.0

Confidence Interval (95%) [44.6, 49.5] [24.4, 44.2] [77.0, 91.5] [72.4, 85.7]
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Figure 57.  Cumulative percentage of actigraphic sleep and individual sailor 
actigraphic sleep, compared to the NSWW (hours per week). 

Based on a one-tailed Wilcoxon Signed Rank Test (  = 0.05), the median 

of actigraphic sleep was significantly less than the NSWW-allotted time (normally 

approximated p-value = 3.8e–06). These results demonstrate that sailors tended 

to sleep less per week than allocated in the NSWW.  

Figure 58 depicts the time that each participant spent doing maintenance 

and work, compared to the NSWW. The plot in Figure 58 is designed in the same 

manner as the one in Figure 57. Only 3% of the total time that participants spent 

doing maintenance and work was contributed by sailors that did less than 14 

hours per week, as designated in the NSWW. Thus, participants in the study, as 

a whole, worked much more than called for by the NSWW. Appendix J contains 

graphs similar to Figure 57 and Figure 58 for all other categories of the NSWW. 
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Figure 58.  Cumulative percentage of reported time spent doing maintenance 
and/or work and individual sailor time spent doing maintenance 

and/or work, compared to the NSWW. 

Based on a one-tailed Wilcoxon Signed Rank Test (  = 0.05), the median 

of maintenance and work was significantly greater than the NSWW-allotted time 

of 14 hours (normally approximated p-value = 2.9e–4). These results 

demonstrate that sailors tended to work more per week than called for by the 

NSWW. 

Next, the amount of time spent in available time and non-available time 

was analyzed and compared to the requirements of the NSWW. In order to make 

the analysis more accurate, actigraphic sleep was used in place of self-reported 

sleep. As actigraphic sleep differs from self-reported sleep, any difference 

between the two was appropriately added (or subtracted) from available time in 

order to ensure that each participant’s time was accurately accounted for. Also, 

due to short watch removal times and/or periods of time in which a participant’s 

time could not be accurately accounted for, the sum of all participants’ available 

and non-available time did not necessarily add up to 168 hours. Even 



 144 

considering these caveats, this analysis still provided insight into the amount of 

time each week that sailors were required to work versus the time they were 

allowed to sleep, eat, and take care of personal items, compared to the NSWW. 

Figure 59 depicts the amount of time that each participant spent in 

available time, compared to the NSWW. The blue and red bars represent 

individual sailors and the left vertical axis is the amount of time spent in available 

time. The gold horizontal line represents the 81 hours of allotted available time 

designated by the NSWW. The green curve with black diamonds depicts the 

cumulative percentage of available time, as shown on the right vertical axis. 

Forty-two percent of the total available time of the 26 participants was contributed 

by sailors that spent 81 hours or less per week in available time. In other words, 

the majority of the participants’ time, as a whole, was spent in available time. 

 

Figure 59.  Cumulative percentage of available time and the amount time that 
each participant spent in available time, compared to the NSWW. 
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Based on a one-tailed Wilcoxon Signed Rank Test (  = 0.05), there was 

not enough evidence to conclude that the median of participant available time is 

significantly greater than the NSWW-allotted time (p-value = 0.18). These results 

demonstrate that while some participants spent much more time in available time 

than called for by the NSWW, others spent less time and there was large 

variability in the available time data. 

Figure 60 depicts the time that each participant spent in non-available 

time, compared to the NSWW. The plot is designed the same as the one in 

Figure 59. Fifty-nine percent of the total non-available time of the 26 participants 

was contributed by sailors that spent 87 hours or less per week in non-available 

time. 

 

Figure 60.  Cumulative percentage of non-available time and the amount time 
that each participant spent in non-available time, compared to the 

NSWW. 
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Based on a one-tailed Wilcoxon Signed Rank Test (  = 0.05), the median 

was statistically significantly less than the NSWW-allotted time (p-value = 0.006). 

Participants did not spend as much time in non-available time as called for by the 

NSWW. 

E. COMPARISON OF ACTIGRAPHIC SLEEP AND SELF-REPORTED 
SLEEP 

In order to gain additional insight into any possible differences between 

self-reported and actigraphic sleep, a statistical comparison of the two sets of 

data was conducted. Due to incomplete sleep and activity logs and/or actigraphy 

data for some participants, only 26 participants were included in this analysis. 

Thirteen participants were from the Reactor Department, three were from the 

Deck Department, and 10 were officers. 

1. Distributional Analysis 

Figure 61 displays a histogram of average daily sleep based on the 

actigraphic data for the 26 participants. The data appears to be somewhat 

normally distributed. Based on the Lilliefors Normality Test (  = 0.05), there is 

not enough evidence to conclude that the data is not normally distributed (p-

value = 0.07); however, due to the relatively small sample size and the heavy 

tails as shown in the Normal Q-Q plot in Figure 62 non-normality is more likely 

and normality was not assumed in the subsequent analyses. 
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Figure 61.  Histogram of average daily sleep, based on actigraphic data of the 26 
participants. 

 

Figure 62.  Normal Q-Q plot of average daily sleep, based on actigraphic sleep 
for the 26 participants. 

Similarly, as shown in Figure 63, the distribution of average daily sleep 

based on self-reported sleep appears to be normally distributed. However, based 
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on the Lilliefors Normality Test (  = 0.05), there is enough evidence to conclude 

that the data is most likely not normally distributed (p-value = 0.05). Therefore, 

normality was not assumed in the subsequent analyses. 

 

Figure 63.  Histogram of average daily sleep based on the self-reported sleep of 
the 26 participants. 

The distributions of average daily sleep for the actigraphic data and self-

reported sleep of the 26 participants appear to be relatively similar. Based on a 

Two-Sample Kolmogorov-Smirnov Test (  = 0.05), with the p-value determined 

through a 10,000-replication simulation, there was insufficient statistical evidence 

to conclude that the distribution of average daily sleep for actigraphic sleep and 

self-reported sleep were different (p-value = 0.93). 

2. Comparative Analysis 

Although the distributions of actigraphic and self-reported sleep are 

similar, potential differences between the two samples were still possible. Figure 
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64 displays the average daily actigraphic and self-reported sleep of individual 

participants, compared to the NSWW. The horizontal blue line represents the 

NSWW-allotted time of eight hours of sleep per day. The participants are sorted 

by hours of actigraphic sleep (orange bars), while the blue bars represent hours 

of self-reported sleep. The green and purple horizontal lines depict the mean of 

self-reported and actigraphic sleep per week, respectively. It is apparent in 

Figure 64 that the means of both actigraphic and self-reported sleep are over one 

hour less than the NSWW-allotted time of eight hours. 

 

Figure 64.  Actigraphic sleep versus self-reported sleep, compared to the 
NSWW-allotted time. 

Figure 65 displays a histogram of the absolute differences between 

actigraphic and self-reported sleep for the 26 participants. The summary 

statistics for average daily actigraphic and self-reported sleep and the absolute 

difference between the two forms of sleep data are displayed in Table 17. The 

confidence interval provided for actigraphic sleep was calculated exactly by a  
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Wilcoxon Signed Rank Test. Due to ties in the data, the confidence interval for 

self-reported sleep was normally approximated as calculated by a Wilcoxon 

Signed Rank Test. 

 

Figure 65.  Histogram of the absolute differences between actigraphic and self-
reported sleep for the 26 participants. 

 

Table 17.   Summary statistics for average daily actigraphic sleep, average daily 
self-reported sleep, and the absolute difference between actigraphic 

and self-reported sleep (hours per day). 

Based on a one-tailed Wilcoxon Signed Rank Test, with the actigraphic 

and self-reported sleep of each participant paired (  = 0.05), actigraphic sleep 

Actigraphic Sleep Self-Reported Sleep Absolute Difference

Mean 6.9 6.7 0.5

Median 6.7 6.7 0.3

Range [4.5, 9.2] [5.3, 8.5] [.02, 1.5]

Standard Deviation 0.8 1.0 0.5

Skewness 0.3 0.3 1.1

Kurtosis 2.8 3.5 2.9

Confidence Interval (95%) [6.6, 7.2] [6.4, 7.1] [.2, .7]
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was significantly less than self-reported sleep (p-value = 0.03). Additionally, the 

95% confidence interval for the median of the difference between actigraphic and 

self-reported sleep, as determined by a Wilcoxon Signed Rank Test, was [–.4, 

.01]. Perhaps this finding suggests that participants perceived that they were 

sleeping more than they were in actuality. This finding also highlights the 

cognitive degradation associated with chronic sleep debt and the common 

phenomenon of sleep-deprived individuals having trouble assessing how much 

sleep they are receiving over a given period of time. 

Figure 66 is a scatter plot of average daily actigraphic sleep, as a function 

of average self-reported sleep. The red line is a linear regression, which shows a 

strong positive correlation (   = 0.78) between self-reported and actigraphic 

sleep as does the green lowess smoother. Furthermore, 59% of the variation in 

actigraphic sleep was accounted for by self-reported sleep. 

 

Figure 66.  Scatter plot of average daily actigraphic sleep and average daily self-
reported sleep with a linear regression (red) and a nonparametric 

lowess regression (green). 
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To determine the effects of different levels of sleep on one’s ability to 

accurately self-report sleep, the participants were broken into three groups based 

on their average daily sleep as determined by actigraphy: participants sleeping 

less than six hours, between six and eight hours, and more than eight hours. 

Figure 67 graphically displays the difference between self-reported and 

actigraphic sleep for the three groups. Clearly, the three groups differed from one 

another. Of note, the group of participants that received greater than eight hours 

of sleep tended to under-report their sleep, those participants that received less 

than six hours of sleep tended to over-report their sleep, and those participants 

receiving between six and eight hours of sleep most accurately reported their 

sleep. Based on a Kruskal-Wallis Rank Sum Test (  = 0.05), there was a 

statistically significant difference between the three different groups with regard 

to the difference between self-reported and actigraphic sleep (p-value = 0.03). In 

other words, the amount of sleep that a participant received affected the 

accuracy with which they self-reported sleep. In particular, those participants 

receiving less than an average of six hours of sleep per day tended to over-report 

the amount of sleep they were getting. 
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Figure 67.  Box plot of the difference between self-reported and actigraphic 
sleep, based on the amount of sleep that participants received. 

Next, a multiple comparison of the different sleep groups in regards to the 

absolute difference between actigraphic and self-reported sleep was conducted. 

Based on a pairwise Multiple Comparison Wilcoxon Rank Sum Test using Holm’s 

p-value adjustment procedure (family-wide =0.05), there was only weak 

statistical evidence to conclude that a statistically significant difference exists 

between any of the groups (p-value = 0.08). As displayed in Table 18, the 

strongest case for a difference between groups existed between those 

participants that received less than six hours of sleep and those that received 

between six and eight. This suggests that participants that experienced severe 

sleep-debt (less than six hours of sleep) tended to be more likely to over-report 

their sleep while those that experienced a moderate amount to little sleep-debt 

(between six and eight hours of sleep) tended to report their sleep more 

accurately. 
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Table 18.   Table of pairwise p-values for the three different ranges of average 
daily sleep, using the Multiple Comparison Wilcoxon Rank Sum Test, 

using Holm’s p-value adjustment. 

These results suggest four issues: (1) sleep deprivation detrimentally 

affected participants’ ability to accurately assess their own sleep; (2) individuals 

receiving less sleep tend to over-report the amount of sleep that they are actually 

getting; (3) individuals sleeping more tend to under-report the amount of sleep 

that they are actually getting; and (4) self-reported sleep cannot be the sole 

source of sleep data relied on by researchers, due to its inaccuracy as a result of 

human error. 

The findings presented in the comparison of self-reported and actigraphic 

sleep differ from the results of a prior study of self-reported and actigraphic sleep 

conducted on a group of 669 young adults in Chicago (Lauderdale, Knutson, 

Yan, & Rathouz, 2009). First, the Chicago study found only a 0.45 correlation 

between actigraphic and self-reported sleep. Second, it only found that 20% of 

the variation in actigraphic sleep was accounted for by self-reported sleep. Third, 

the Chicago study found that at its actigraphic mean of six hours, self-reported 

sleep differed the most, whereas, in this thesis, self-reported sleep differed the 

most at daily sleep levels less than six hours. 

F. SAFTE-FAST ANALYSIS 

SAFTE-FAST was used to determine and analyze on-watch predicted 

effectiveness and the proportion of the total on-watch time spent below the 

criterion level of 77.5. The criterion level of 77.5 is equivalent to a BAC of 

approximately .05 and is the level at which the United States Air Force (USAF) 

applies countermeasures to improve performance. In operational environments, 

predicted effectiveness levels below this criterion require additional investigation. 

Due to incomplete actigraphic and self-reported sleep and activity logs, only 25 

Between 6 and 8 Less than 6

Less than 6 0.08 -

More than 8 0.23 0.11
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participants were included in the SAFTE-FAST analysis. Twelve participants 

were from the Reactor Department, three were from the Deck Department, and 

10 were officers. Both on-watch predicted effectiveness and the proportion of 

time spent below criterion were analyzed with respect to age, gender, 

commissioning status, department, watchstation location, and ESS and CSM 

scores. The FAST plots for all participants are in Appendix K. 

1. On-Watch Predicted Effectiveness 

The overall distribution of mean on-watch predicted effectiveness for the 

25 participants, as shown in Figure 68, appears to be somewhat normally 

distributed. The Shapiro-Wilk Test for normality (  = 0.05) confirms that the data 

is most likely normally distributed (p-value = 0.25); however, normality will not be 

assumed due to the relatively small sample size. 

 

Figure 68.  Distribution of the mean on-watch predicted effectiveness for the 26 
participants. 
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The summary statistics for average on-watch predicted effectiveness are 

presented in Table 19. All confidence intervals provided in the table of summary 

statistics are for the median of average on-watch predicted effectiveness, as 

calculated exactly by Wilcoxon Signed Rank Tests. For the Deck Department, 

the Reactor Department, and officers, 75%, 95%, and 95% confidence intervals 

are provided, respectively. The confidence interval for the Deck Department is 

only 75%, due to the limited number of Deck Department participants included in 

the SAFTE-FAST analysis (n = 3). 

 

Table 19.   Summary statistics for average on-watch predicted effectiveness  
(n = 25). 

Table 20 presents the two-tailed p-value and the name of the statistical 

test used for each of the tests of statistical significance conducted with regard to 

average on-watch predicted effectiveness for the different variables of interest. 

All p-values provided in this table are calculated exactly. 

Mean Median Range Std Dev Skewness Kurtosis Confidence Interval

All Participants 84.6 84.9 [67.4, 95.9] 6.4 –0.59 3.7 [82.4, 87.0]

Male 84.1 84.5 [67.4, 95.9] 7.0 –0.50 3.3 [80.4, 93.5]

Female 86.3 85.2 [80.4, 93.5] 4.4 0.50 2.6 [80.9, 87.4]

Enlisted 82.7 84.4 [67.4, 88.8] 5.3 –1.70 5.8 [80.3, 85.3]

Officer 87.5 88.3 [75.9, 95.9] 7.1 –0.60 2.2 [82.1, 92.1]

Reactor 81.9 83.3 [67.4, 88.8] 5.6 –1.50 4.8 [78.1, 85.0]

Deck 86.2 85.3 [85.1, 88.3] 1.8 0.69 1.5 [85.1, 88.3]

Belowdecks 83.2 84.4 [67.4, 90.4] 7.1 –0.30 2.1 [80.5, 86.3]

Topside 86.8 86.8 [75.9, 95.9] 5.7 –1.50 5.1 [80.7, 91.8]

Intermediate Type 85.0 85.1 [67.4, 95.9] 6.3 –0.85 4.7 [82.9, 87.8]

Morning Type 83.0 84.7 [75.9, 93.5] 7.4 0.32 1.8 [75.9, 93.5]

Elevated ESS 82.5 82.9 [75.3, 93.5] 5.3 0.33 2.9 [79.1, 85.1]

Normal ESS 86.3 87.5 [67.4, 95.9] 6.9 –1.30 5.4 [84.2, 89.9]
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Table 20.   P-value results and the name of the statistical test used for 
determining statistical significance (  = 0.05) for average on-watch 

predicted effectiveness for the variables of interest. 

Several past studies have found that moderate levels of fatigue produce 

performance decrements equivalent to or greater than those observed at levels 

of alcohol intoxication deemed unacceptable when driving, working, and 

operating heavy machinery (Dawson & Reid, 1997; Lamond & Dawson, 1999). 

One participant often stood watch while significantly impaired. Thus, the 

minimum average on-watch predicted effectiveness is important to note, because 

67.4 corresponds to a BAC of approximately 0.08, the legal limit for operating a 

motor vehicle. Additionally, a level of 65 is equivalent to 40 hours of sustained 

wakefulness. This participant experienced several periods of extreme sleep debt 

and, as a result, his on-watch performance suffered. Additionally, 4 of the 25 

(16%) participants’ mean on-watch predicted effectiveness was less than the 

criterion level of 77.5. Of these four, two participants were from the Reactor 

Department and two were officers. 

a. Commissioning Status 

The summary statistics for average on-watch predicted effectiveness for 

enlisted sailors and officers are displayed in Table 19. The boxplot in Figure 69 

displays additional information about the average on-watch predicted 

effectiveness according to commissioning status. As shown in Table 20, the 

difference in on-watch predicted effectiveness between officers and enlisted 

sailors was statistically significant. Officers’ on-watch predicted effectiveness 

tended to be greater than that of enlisted sailors. 

p-value (2-tailed) Type of Test Statistically Significant?

Gender 0.56 Wilcoxon Rank Sum No

Commissioning Status 0.04 Wilcoxon Rank Sum Yes

Department 0.04 Kruskal-Wallis Rank Sum Yes

Watchstation Location 0.13 Wilcoxon Rank Sum No

ESS 0.04 Wilcoxon Rank Sum Yes

CSM 0.58 Wilcoxon Rank Sum No
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Figure 69.  Box plot of average on-watch predicted effectiveness, delineated by 
commissioning status. 

One of the most likely contributing factors was the difference in watch 

rotations between officers and enlisted sailors. Most officers stood 4ON/20OFF, 

while enlisted sailors stood either 5ON/15OFF or 5ON/10OFF. Having shorter 

watches with more time off provided more time to not only sleep, but also to get 

additional work completed. Thus, even though the NSWW analysis shows that 

officers spent more time doing work than the other groups, they were provided 

more time to complete their work.  

b. Department 

The summary statistics for average on-watch predicted effectiveness 

according to department are presented in Table 19. Figure 70 displays additional 

information about the average on-watch predicted effectiveness of the 

departments. As shown in Table 20, the difference in average on-watch predicted 

effectiveness between the three groups was statistically significant. 
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Figure 70.  Boxplot of average on-watch predicted effectiveness, delineated by 
department. 

Next, a multiple comparison of the average on-watch predicted 

effectiveness of the different departments was conducted. Based on a pairwise 

Multiple Comparison Wilcoxon Rank Sum Test using Holm’s p-value adjustment 

procedure (family-wide   = 0.05), there was only weak statistical evidence to 

conclude that a statistically significant difference existed between any of the 

groups (smallest p-value = 0.09). As displayed in Table 21, the strongest case for 

a difference between groups existed between the Reactor Department and the 

officers.  

  

Table 21.   P-values of all pairwise comparisons for the average on-watch 
predicted effectiveness, according to department. 

Deck Officers

Officers 0.47 -

Reactor 0.14 0.09
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These finding suggest that officers tended to have a higher average on-

watch predicted effectiveness; however, due to the weak evidence, additional 

research may need to be conducted to confirm this result. Furthermore, even 

though the Reactor Department utilized a four-section 5ON/15OFF watch 

rotation, compared to the three-section 5ON/10OFF watch rotation used by the 

Deck Department (considered the least favorable watch rotation), the participants 

from the Reactor Department tended to experience lower average on-watch 

predicted effectiveness levels and differed even more from the officers. 

Furthermore, the Reactor Department spent the most time in service diversions 

(responding to unplanned events such as emergencies) and training and the 

second most time performing maintenance and work. This result points to other 

factors besides watch rotation, such as the amount of time spent performing 

maintenance and/or work, responding to emergencies, or training, as elements 

affecting on-watch performance levels. Thus, all of these factors must be taken 

into account when developing watch rotations and operational schedules on 

warships. 

c. Epworth Sleepiness Scale 

The summary statistics for average on-watch predicted effectiveness, 

according to ESS category, are displayed in Table 19. Figure 71 displays 

additional information about average on-watch predicted effectiveness according 

to ESS category. As shown in Table 20, the difference in average on-watch 

predicted effectiveness between ESS categories was statistically significant. 
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Figure 71.  Boxplot of average on-watch predicted effectiveness, delineated by 
ESS category. 

These results suggest that the ESS could be a useful tool for not only 

diagnosing sleep-induced fatigue of personnel in operational environments, as 

discussed in Chapter IV, Section C.1.a, but also used as a means for identifying 

personnel who are potentially impaired due to sleep-related fatigue. By 

identifying potentially impaired personnel prior to certain critical events and time 

periods, such as watch, drills, or underway replenishments, operational 

commands will have the opportunity to administer fatigue countermeasures 

and/or amend watchbills and operational schedules to ensure that all personnel 

involved are at an adequate level of performance. Furthermore, the ESS is a 

quick, efficient, and cost-effective method for determining an individual’s level of 

fatigue and potential impairment. 

2. Time Below Criterion 

The proportion of on-watch time below the predicted effectiveness 

criterion level of 77.5 was determined and analyzed for each participant. Figure 

72 displays the distribution of the proportion of on-watch time spent below 
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criterion. Based on the Lilliefors Test for normality (  = 0.05), there is strong 

statistical evidence that the data is not normally distributed (p-value = 0.001). 

Therefore, normality will not be assumed in subsequent analyses. 

 

Figure 72.  Distribution of the proportion of on-watch time below criterion for the 
25 participants. 

The summary statistics for the proportion of on-watch time below criterion 

are displayed in Table 22. All confidence intervals provided in the table of 

summary statistics are for the median of average on-watch predicted 

effectiveness, as calculated exactly by Wilcoxon Signed Rank Tests. However, 

due to several officers never reaching the minimum predicted effectiveness level 

of 77.5 and, therefore, having a proportion of on-watch time below criterion equal 

to zero, they could not be used in the p-value calculation using the Wilcoxon 

Rank Sum Test. Thus, the number of observations for officers was limited, 

thereby reducing the power of the test and making the detection of any 

differences between the two groups more difficult. Additionally, the reduced 

number of usable observations for officers only allowed for an 80% confidence  
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interval to be calculated for the median of the proportion of on-watch time below 

criterion. For the Deck Department and Reactor Department, 75% and 95% 

confidence intervals are provided, respectively. 

 

Table 22.   Summary statistics for the proportion of on-watch time spent below 
criterion. 

Table 23 presents the two-tailed p-value and the name of the statistical 

test used for each of the tests of statistical significance conducted, with regard to 

the proportion of on-watch time spent below criterion for the variables of interest. 

All p-values provided in this table are calculated exactly. 

 

Table 23.   P-value results and the name of the statistical test used for 
determining statistical significance, with regard to the proportion of 

on-watch time spent below criterion for the variables of interest. 

Mean Median Range Std Dev Skewness Kurtosis Confidence Interval

All Participants 0.22 0.19 [0.0, 1.0] 0.23 1.70 6.4 [.18, .35]

Male 0.25 0.18 [0.0, 1.0] 0.27 1.30 4.0 [.17, .47]

Female 0.19 0.21 [0.0, .34] 0.11 –0.34 2.5 [.17, .28]

Enlisted 0.29 0.21 [.05, 1.0] 0.24 1.80 5.7 [.17, .41]

Officer 0.15 0.00 [0.0, .62] 0.23 1.20 2.9 [.15, .62]

Reactor 0.29 0.21 [.05, 1.0] 0.25 2.01 6.5 [.15, .41]

Deck 0.19 0.20 [.13, .23] 0.05 –0.54 1.5 [.13, .23]

Belowdecks 0.25 0.19 [0.0, 1.0] 0.24 2.20 7.6 [.15, .34]

Topside 0.18 0.10 [0.0, .62] 0.22 0.93 2.6 [.22, .47]

Intermediate Type 0.21 0.18 [0.0, 1.0] 0.23 2.20 8.6 [.17, .33]

Morning Type 0.28 0.23 [0.0, .62] 0.27 0.26 1.5 [.05, .62]

Elevated ESS 0.29 0.23 [0.0, .62] 0.18 0.44 2.6 [.20, .43]

Normal ESS 0.17 0.11 [0.0, 1.0] 0.27 2.50 8.5 [.10, .60]

p-value (2-tailed) Type of Test Statistically Significant?

Gender 0.95 Wilcoxon Rank Sum No

Commissioning Status 0.08 Wilcoxon Rank Sum No

Department 0.18 Kruskal-Wallis Rank Sum No

Watchstation Location 0.4 Wilcoxon Rank Sum No

ESS 0.03 Wilcoxon Rank Sum Yes

CSM 0.54 Wilcoxon Rank Sum No
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a. Epworth Sleepiness Scale 

The summary statistics for the proportion of on-watch time below criterion 

for participants with elevated and normal ESS scores are displayed in Table 22. 

Figure 73 presents additional information about the proportion of on-watch time 

below criterion for the different categories. As shown in Table 23, the difference 

in the proportion of on-watch time below criterion for participants with normal and 

elevated ESS scores was statistically significant. Participants with elevated ESS 

scores tended to spend a greater proportion of on-watch time below criterion 

than participants with normal ESS scores. This result adds validity to the 

argument that the ESS could be a useful tool for determining possible fatigue-

related risk factors in watchstanders in order to provide the opportunity for 

administering countermeasures, such as naps or modifying watch rotations, in 

order to prevent errors and mishaps from occurring 

 

Figure 73.  Boxplot of the ratio of on-watch time spent below criterion and total 
on-watch time, delineated by ESS category. 
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b. Composite Scale of Morningness 

The summary statistics for the proportion of on-watch time below criterion, 

based on CSM-determined chronotype, are displayed in Table 22. Figure 74 

presents additional information about the proportion of on-watch time below 

criterion for the different chronotypes. As shown in Table 23, the difference in the 

proportion of on-watch time spent below criterion for participants of intermediate 

and morning chronotypes was not statistically significant. 

 

Figure 74.  Boxplot of the ratio of on-watch time spent below criterion and total 
on-watch time, delineated by CSM-determined chronotype. 

This result was interesting because a statistically significant difference 

existed between the two groups’ average daily sleep. One possible explanation 

could be that the large variability in participants’ on-watch performance and the 

proportion of on-watch time spent below criterion, coupled with the small number 

of morning-type participants (n = 5), made detecting any statistical differences 

between the two groups difficult. Even though participants with a morning 

chronotype slept less, on average, than intermediate-type participants, perhaps 
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some factor other than the amount of sleep, such as sleep timing, caused the 

groups’ on-watch predicted effectiveness and proportion of on-watch time below 

criterion to be similar. Thus, while intermediate-type participants show greater 

circadian flexibility in that they are able to receive, on average, more sleep each 

day, perhaps the sleep they are getting is poorly timed with respect to the time of 

day and their circadian rhythm, as well as their watch rotation. Additional 

research should be conducted in order to further investigate the possible causes 

for the differences in results between average daily sleep and predicted 

effectiveness for chronotype. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

While the U.S. Navy simultaneously reduces the number of U.S. ships and 

naval personnel, the fleet is assuming more missions and responsibilities. As a 

result, the operational tempo and demands placed on enlisted sailors and officers 

continues to increase. U.S. aircraft carriers, considered one of the most important 

military assets available to the President, are routinely called on to execute year-

long deployments, with surge capability, in response to crises around the world. 

As a result, much is demanded of the crews of these warships. The decrease in 

manpower and increased pace of operations, coupled with the already 

challenging environment that naval personnel are required to work and live in 

while deployed, results in poor sleep, extreme fatigue, degraded performance, 

and often avoidable mistakes and mishaps. This thesis contributes to on-going 

studies of warfighter sleep, fatigue, and performance by analyzing the sleep, 

work schedules, and on-watch performance of the crew of the USS Nimitz.  

The data analyzed in this thesis were collected at sea under operational 

conditions. The analysis of operational data is vital for confirming the applicability 

of existing sleep research for use by the U.S. Navy. However, by its nature, the 

data analyzed here is observational and not a result of a designed experiment. 

1. Epworth Sleepiness Scale 

The ESS was used to determine daytime sleepiness levels of the 

participants. Forty-seven percent of participants had elevated ESS scores, 

indicating that nearly half of the participants experienced high levels of daytime 

sleepiness. The majority of officers had normal ESS scores, whereas the split 

between the two categories for enlisted sailors was nearly even. 

The analysis of ESS scores showed a strong statistical difference between 

officers and enlisted sailors. Officers tended to have lower ESS scores and less 

daytime sleepiness, as compared to enlisted sailors. The difference, however, 
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between the proportions of officers and enlisted sailors in the elevated and 

normal categories of ESS scores was not statistically different. 

2. Composite Scale of Morningness 

The CSM was used to determine participants’ chronotypes. Twenty-five 

out of 32 (78%) of the participants were determined to be of intermediate 

chronotype, seven (22%) were determined to be of morning chronotype, and 

none were determined to be of evening chronotype. Although there was little 

overall correlation between CSM score and age, a strong negative correlation 

between enlisted sailor CSM score and age was found. There was little 

correlation between officer age and CSM score. The strong negative correlation 

for enlisted sailors is contradictory to a past study conducted by Roenneberg, 

Justice, et al. (2003), which found that after early adulthood, CSM scores tended 

to decrease (i.e., people tend to favor morningness as they age). 

In Chapter IV, Section B.7.a, two possible explanations were proposed for 

the strong negative correlation between enlisted sailor age and CSM score and 

the prevalence of intermediate chronotype among the participants: psychological 

adaptation through cognitive dissonance reduction; and individuals with less 

circadian flexibility (i.e., strong morningness or eveningness preference types) 

may be more likely to get out of the Navy earlier in their careers. The results, 

coupled with these two explanations, lead to two important conclusions: (1) 

caution is warranted when using CSM as a means for determining naval 

personnel chronotypes in operational environments because psychological 

adaptation by individuals can cause deceiving results; and (2) circadian flexibility 

may affect long-term retention in the U.S. Navy. 

The weak statistical difference in CSM scores between belowdecks and 

topside watchstanders, coupled with the fact that the Reactor Department, 

compared to the other departments, had significantly lower CSM scores, points 

to two conclusions: (1) exposure to natural light while on watch affects one’s  
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circadian entrainment; and (2) the effect on circadian entrainment may be 

profound enough to cause a difference in CSM score between watchstation 

locations. 

The finding that participants with morning chronotypes had statistically 

higher ESS scores, compared to those participants with intermediate 

chronotypes, and the finding that a statistically higher proportion of participants  

with morning chronotypes were determined to have elevated ESS scores, leads 

to two conclusions: (1) greater circadian flexibility leads to less daytime 

sleepiness as a result of sleep debt in naval operational environments; and (2) 

with regard to sleep and fatigue, individuals of intermediate chronotype may be 

better suited for operational Navy environments because they are better able to 

make use of irregular sleep opportunities. 

3. Average Daily Sleep 

The average daily sleep of participants was determined and analyzed in 

order to assess the amount of daily sleep participants received over the course of 

the data collection period. The 95% confidence interval for the median of average 

daily sleep was [6.3, 7.1]; however, 22/32 (69%) and 6/32 (19%) of participants 

received less than seven hours and less than six hours of sleep per day, 

respectively. These sleep levels certainly resulted in substantial sleep debt over 

the course of the data collection. 

Participants with normal ESS scores received significantly more sleep 

than those participants with elevated scores. On average, participants with 

normal ESS scores received approximately one additional hour of sleep per day. 

This result is comparable to the findings of a previous study conducted by 

Shattuck and Matsangas (2014), which found that ESS scores correlated with 

PVT scores and daily sleep. ESS is a feasible method for measuring sleep-

related fatigue of personnel in naval operational environments. Furthermore, 

since the ESS takes only two to three minutes to complete and is relatively  
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inexpensive to administer to personnel on ships, it provides a unique tool for 

quickly identifying fatigued personnel, allowing the opportunity for administering 

fatigue countermeasures. 

Participants with a morning chronotype received significantly less sleep 

than participants with an intermediate chronotype. On average, intermediate-type 

participants slept over one hour more per day than morning-type participants. 

This finding is comparable to past studies that found later chronotypes 

(intermediate and evening) showed a higher tolerance for shiftwork (Duffy, Dijk, 

Hall, & Czeisler, 1999; Foster & Kreitzman, 2004; Harma, Tenkanen, Sjoblom, 

Alikoski, & Heinsalmi, 1998; Ostberg, 1973). Although participants with an 

intermediate chronotype still experienced sleep deprivation during the course of 

the data collection period, the fact that their average daily sleep was statistically 

higher than morning-type participants leads to two conclusions: (1) a person’s 

predisposed chronotype affects the amount of sleep that they are able to receive 

on an operational warship at sea; and (2) personnel with greater circadian 

flexibility show greater tolerance for the rotating watch schedules traditionally 

employed by operational warships at sea. 

4. Day-to-Day Sleep 

Participants were split into three different periods according to when they 

took part in the data collection. Each period was analyzed separately and then 

the periods were compared to assess potential differences. The majority of 

participants demonstrated highly inconsistent day-to-day sleep. For all the 

periods, there was little correlation between average daily sleep and the day-to-

day variance of each participant’s sleep. Thus, for the participants in this study, 

there was little connection between the consistency of one’s sleep and the actual 

amount one slept over the course of the data collection period. The main 

conclusion to be drawn from these results is that average daily sleep can be 

deceiving when analyzing the sleep habits of personnel in operational units at 

sea. Often, individuals rely on a single period of extended sleep (in excess of 
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eight hours) or “binge sleep,” in an attempt to recover from several days of 

severe sleep debt. Unfortunately, as a study by Belenky et al. (2003) has shown, 

recovery from even modest amounts of sleep debt in a single extended sleep 

period is not possible. 

In this study, participants in the Reactor Department were the biggest 

culprits of “binge sleeping.” The average sleep of all participants from the 

Reactor Department was statistically greater on Sundays than all other days of 

the week, demonstrating a clear day-of-the-week effect with regard to day-to-day 

sleep. The department systematically sleep-deprived its personnel throughout 

the week and adopted a “holiday” routine on Sundays in order to provide its 

personnel with only a single day to recover from six days of minimal sleep. Thus, 

unknowingly, this department routinely forced personnel to stand watch while 

extremely fatigued, and put the ship and its crew in danger on a daily basis. 

Overall, the officers had significantly more consistent day-to-day sleep 

than the Reactor Department. Furthermore, there was not a day-of-the-week 

effect present for the officers. The officers, on a much more favorable 

4ON/20OFF watch schedule, compared to the 5ON/15OFF schedule adopted by 

the Reactor Department, clearly demonstrated more consistent sleep. This 

finding is interesting because although the median of officer average daily sleep 

was only 24 minutes greater than that of Reactor Department participants, 57% 

(8/14) of the Reactor Department participants had elevated ESS scores, as 

compared to only 27% (3/11) for officers. The more favorable overall ESS scores 

of officers can be, at least in part, linked to the more consistent day-to-day sleep 

they received. These results again highlight the utility of the ESS in determining 

sleep-related fatigue of personnel in operational units. 

The most important conclusion to draw from the analysis of day-to-day 

sleep is that overall the participants had poor “sleep hygiene.” Sleep hygiene, as 

defined by the NSF (2014b), is a “variety of different practices that are necessary 

to have normal, quality nighttime sleep and full daytime alertness” to include 

avoiding daytime naps and stimulants, establishing a regular relaxing bedtime 



 172 

routine, adequate exposure to natural light, and ensuring that the sleep 

environment is pleasant (para. 1, para. 3). Unfortunately, few, if any, of the 

participants’ sleep habits demonstrated any of these characteristics. 

5. Navy Standard Workweek 

The work and sleep schedules of the participants were analyzed and 

compared to the NSWW to determine the utility of the NSWW in informing 

manpower decisions for U.S. aircraft carriers. The NSWW categories with the 

greatest deviation from the NSWW-allotted times were free time, maintenance 

and work, and meetings and service diversions. The greatest overall deviation 

was for the maintenance and work category. 

For participants in this study, 73% exceeded the 14 hours per week of 

time allocated for maintenance and work in the NSWW. On average, participants 

worked 18.3 hours per week more than they were allotted in the NSWW, or 2.6 

hours more per day. Additionally, 85% of participants slept less than the 56 hours 

of time allocated in the NSWW and, on average, slept 7.7 hours less than the 

NSWW-allotted time, or 1.1 hours less per day. Interestingly, only one participant 

stood more watch than the 56 hours allocated in the NSWW and, on average, 

participants stood watch 20.3 hours less per week than the NSWW-allotted time, 

or 2.9 hours less per day. Overall, on-watch time did not account for a substantial 

portion of participants’ daily routines. However, 65% of participants exceeded the 

four hours of time allotted in the NSWW for meetings and service diversions. On 

average, participants spent 5.8 hours more per week in meetings and service 

diversions, or 0.8 hours more per day, than they were allotted in the NSWW. 

Clearly, the amount of maintenance and work that participants were required to 

complete, coupled with the significant amount of time that participants had to 

spend in meetings and responding to unplanned events (service diversions) 

reduced the amount of time available for sleep. The small deviation from the 

NSWW category of watch and the large deviations between the NSWW and the 

two categories of maintenance and work and meetings and service diversions 
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suggest that the NSWW does not accurately reflect the demands placed on 

today’s sailors and officers. Determining aircraft carrier manning levels cannot be 

based solely on watchstation manning alone, but maintenance requirements and 

the potential for unplanned events and other daily activities must also be 

considered. Thus, more complex tools, such as IMPRINT Pro, must be utilized 

for doing so. 

The fact that the Deck Department reported the most free time, yet also 

was the statistically youngest department, led to the analysis of the amount of 

reported free time as a function of age. A weak negative correlation between 

average daily free time and age was found. As the age of participants increased, 

the amount of average daily free time that they reported decreased. Since the 

Deck Department’s average daily sleep and ESS scores did not differ 

substantially from the other departments, yet they had the most free time, 

suggests the following possible conclusions: (1) young sailors demonstrate poor 

time management skills when not given specific tasks; and (2) young sailors, 

although possessing more opportunities to sleep (i.e., free time), may not be able 

do so as a result of the numerous issues associated with rotating watch 

schedules and the work schedules used on operational surface ships. 

6. Comparison of Self-Reported and Actigraphic Sleep 

Actigraphic sleep was compared to the self-reported sleep of the 

participants. Overall, actigraphic sleep was statistically significantly less than self-

reported sleep. Participants tended to over-report the amount of sleep that they 

received during the data collection period. This initial finding suggests that, in 

operational environments, one may tend to overestimate the amount of sleep 

received on a daily basis; however, self-reported sleep can still be a useful tool, 

since it provides an additional method for corroborating actigraphic sleep data. 

The findings from the comparison of actigraphic and self-reported sleep 

differ from that of a previous study conducted by Lauderdale et al. (2009) which 

found a moderate correlation between actigraphic and self-reported sleep and 
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that only 20% of the variation in actigraphic sleep data could be explained by 

self-reported sleep. A stronger correlation between actigraphic and self-reported 

sleep data was found in the Nimitz data and a greater amount of the variation in 

actigraphic sleep data was explained by the self-reported sleep data. These 

findings suggest that self-reported sleep may actually be more accurate in U.S. 

Navy operational environments than in other civilian-type sleep studies and, 

although actigraphic data is preferred, self-reported sleep data can provide useful 

insights into the sleep habits of warfighters at sea. 

In order to determine the effect of different levels of sleep debt on the self-

reporting of sleep, study participants were split into three groups. These groups 

were based on the amount of actigraphic sleep participants received: greater 

than eight hours, between six and eight hours, and less than six hours. Based on 

this analysis, participants that received between six and eight hours of sleep, on 

average, most accurately self-reported their sleep, while participants that slept 

less than six hours were least accurate. The participants sleeping greater than 

eight hours, on average, tended to under-report their sleep, while the other two 

groups tended to over-report their sleep. Additionally, the group that reported 

receiving greater than eight hours of sleep showed the greatest variability in the 

accuracy of self-reported sleep. The findings in this thesis differ from a previous 

study, which found that at the actigraphic mean of six hours, self-reported and 

actigraphic sleep differed the most (Lauderdale, Knutson, Yan, & Rathouz, 

2008). The results of the Nimitz study suggest that the largest difference occurs 

in participants receiving less than six hours of sleep, on average. These findings 

suggest that: (1) personnel suffering from severe sleep debt, as a method of 

cognitive dissonance reduction, may attempt to psychologically adapt by over-

reporting their sleep; and (2) sleep-related fatigue negatively affects one’s ability 

to assess the amount of sleep that they are getting. The fatigued brain cannot 

judge its impairment. 
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7. SAFTE-FAST Analysis 

SAFTE-FAST was used to determine participants’ on-watch predicted 

effectiveness and the proportion of on-watch time participants spent below the 

criterion level of 77.5. This criterion level is equivalent to a BAC of approximately 

0.05 and is the level at which the USAF requires the application of fatigue 

countermeasures. Officers tended to have a higher on-watch predicted 

effectiveness than enlisted sailors. Even though officers tended to receive slightly 

more sleep (24 minutes per day, on average), the difference was not determined 

to be statistically significant. Officers’ on-watch predicted effectiveness, however, 

was significantly greater than that of enlisted sailors. Additionally, although 

Reactor Department personnel on average received a similar amount of daily 

sleep, compared to the other departments, the on-watch predicted effectiveness 

of participants from the Reactor Department was significantly less than that of the 

other departments. The difference in the results between average daily sleep and 

on-watch predicted effectiveness is important, as it suggests that: (1) average 

daily sleep can be a deceiving measure of the effects of sleep-related fatigue 

when not analyzed along with other factors, such as sleep-timing and circadian 

effects; (2) since the participants of the Reactor Department demonstrated the 

least consistent day-to-day sleep of any department and systematically became 

sleep deprived on a weekly basis, sleep consistency and overall “sleep hygiene” 

affect on-watch performance; and (3) the reliance on Sunday “binge sleep” by the 

Reactor Department negatively affected their on-watch performance, 

demonstrating the futility of such efforts in naval operational environments. 

There were significant differences between the on-watch predicted 

effectiveness of participants with elevated and normal ESS scores. Participants 

with normal ESS scores tended to have higher on-watch predicted effectiveness 

scores. Additionally, the difference between the two groups in the proportion of 

on-watch time spent below criterion was statistically significant. Participants with 

normal ESS scores tended to spend a smaller proportion of time on-watch below 

criterion level. These findings demonstrate the usefulness of the ESS in not only 
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determining personnel that may be fatigued due to sleep-related issues, but also 

as a quick and efficient method for determining individuals at-risk for low on-

watch performance. ESS can be an effective tool for discriminating between 

individuals ready to perform not just at the start of watch and other critical tasks, 

but for the majority of time during which an evolution is to be carried out. 

Although participants of intermediate chronotype tended to get more sleep 

than morning-type participants, there was not a significant difference between the 

groups with regard to on-watch predicted effectiveness and the proportion of on-

watch time spent below criterion. The difference between these findings suggests 

that although greater circadian flexibility may result in personnel receiving a 

greater amount of average daily sleep, it does not guarantee higher on-watch 

performance levels. Other factors, such as sleep timing and circadian effects, 

play an important role in determining an individual’s on-watch performance 

levels, and must be taken into account when developing watch rotations and 

work schedules. 

B. RECOMMENDATIONS 

The recommendations set forth in this thesis aim to inform U.S. Navy 

leadership and shape the direction of future research with regard to sleep, 

fatigue, performance, work schedules, and manpower planning. Although much 

work has already been accomplished in this field of research, the 

recommendations in this thesis seek to add to the already detailed and often 

already implemented recommendations proposed by past NPS theses. 

1. Recommendations for U.S. Navy Leadership 

There are a myriad of sleep, fatigue, and performance analysis and 

diagnostic tools available that are currently being underutilized by the U.S. Navy. 

First, the ESS should be implemented as a tool for monitoring sleep-related 

fatigue and performance issues on all surface ships and submarines. Since it will 

cost very little and pose a minimal burden on the crew of any ship, having  
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personnel complete the ESS survey could be a useful and simple method for 

identifying watchstanders that are at risk of being overly fatigued and potentially 

having low on-watch performance. 

Second, as chronotype affects the amount of sleep participants received 

and their ESS scores, diurnal preference needs to be taken into account as a 

possible factor in Navy recruitment and retention. CSM and MEQ should be 

administered to all personnel in the Navy and used as a tool for identifying and 

educating potentially “at-risk” individuals. Navy personnel with a morning diurnal 

preference are at a disadvantage, compared to personnel with greater circadian 

flexibility, with regard to not only the amount of sleep they get and their daytime 

fatigue levels, but possibly also with regard to retention rates. Implementing 

mandatory training with regard to sleep hygiene and the warning signs and 

symptoms of sleep debt and sleep deprivation for all ranks, especially young 

enlisted sailors, division officers, and senior enlisted leaders, would be beneficial. 

This training should also encompass educating personnel on diurnal preference, 

giving personnel the opportunity to determine their chronotype, and to tailor 

education based on chronotypes. 

SAFTE-FAST is a relatively simple, yet robust, tool that can be used to 

determine and predict the on-watch effectiveness of naval personnel on 

operational units at sea. Unfortunately, it is being woefully underutilized 

throughout the U.S. Surface Navy. Even though SAFTE-FAST is not specifically 

tailored for maritime use, it is the only modeling tool that is validated against PVT 

data and can quickly, even with limited or no data, provide an estimate of a 

watchstander’s effectiveness levels prior to, during, and after watch. 

Guidance should be provided to all operational commands mandating the 

use of SAFTE-FAST when designing watch rotations in order to determine the 

predicted effectiveness levels of watchstanders. Furthermore, SAFTE-FAST 

should be used in the investigation of all near misses, mishaps, and accidents in 

all Navy units. In order to effectively implement SAFTE-FAST as a useful tool, 

Navy leadership must also mandate, develop, and provide training on SAFTE-



 178 

FAST. This training must go beyond simply exposing personnel to SAFTE-

FAST’s potential uses. Rather, this training must educate potential future users 

about circadian rhythms, sleep architecture, human performance and its 

relationship to fatigue, and, most certainly, how to effectively use and employ 

SAFTE-FAST in operational environments. 

The NSWW is an inadequate tool for informing manpower decision 

makers. Basing complex manpower decisions on a scheme of outdated 

categories and time allocations is a naïve approach. If the NSWW is going to 

continue to be a tool used for manpower planning, it must be altered to 

accurately reflect the tremendous amount of time that sailors and officers spend 

conducting maintenance, working and attending meetings, and responding to 

unplanned events. The key driver for determining manning levels should not 

always be the number and type of watchstations that need to be filled. Rather, 

the amount of work and other requirements outside of watch need to be 

emphasized in any new NSWW or equivalent planning tool. A single type of 

NSWW cannot be used for informing manpower decisions for all platforms and 

rates. Instead, individualized or tailored NSWWs should be developed for 

different types of ships and rates. Other tools, such as the IMPRINT Pro Forces 

Module, which is a stochastic event simulation tool designed by the Army 

specifically for informing manpower decisions, should be considered as a 

possible tool to supplement the NSWW. 

2. Recommendations for Future Research 

In order to generalize the results of the ESS and CSM findings from this 

thesis, larger studies of personnel, in several different types of operational 

environments and on different types of naval platforms, need to be conducted. 

Furthermore, a Navy-wide study of personnel chronotypes should be performed 

in order to determine any potential connection between diurnal propensity and 

retention. 
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Although the Navy is already developing alternate methods for informing 

manpower decisions, detailed and large-scale studies of daily routines of naval 

personnel, compared to the NSWW, still need to be conducted. Future research 

should use this data as an input for IMPRINT Pro to investigate the effect of 

different manning levels on fatigue, individual performance, and unit 

performance. The results of such analyses should then be compared to the 

current NSWW, allowing for more detailed recommendations for developing tools 

for manpower planning. 

Additional studies of at-sea operational units involving the use of SAFTE-

FAST, in conjunction with PVT and actigraphic data, are needed to validate 

SAFTE-FAST for maritime use. Doing so would only serve to substantiate the 

use of SAFTE-FAST for evaluating the sleep, fatigue, performance, and work 

schedules of naval personnel while deployed at sea. 
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APPENDIX A. DEMOGRAPHIC QUESTIONNAIRE 
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APPENDIX B. END-OF-STUDY QUESTIONNAIRE 

End of Study Questionnaire 
1. Were you standing watch during this underway deployment? (Check one) ___Yes  

____No 

If Yes, 

What department do you work in? 
________________________________________________________ 

Which watch standing rotation were you on for the majority of your deployment (hours 
on/hours off)? 

 5/10 

 5/15 

 6/6 

 6/12 

 6/18 

 12/12 

 Other 
(describe)______/_______ 

What section of the watch bill were you working (section #)? 
__________________________________ 

Where did you stand watch (ex: CIC, Bridge, etc.)? 

_________________________________________ 

2. Did anything about your watch schedule change since you started wearing the sleep watch? 

(Check one) 

 Yes 

 No 
 

If Yes, 
 

Please describe any changes to your watch schedule that occurred since you started 
wearing the sleep 
watch.__________________________________________________________________
_______ 
 

3. Did you have any collateral duties during this underway? (Check one) ___Yes ____No 

If Yes, 

What kind of collateral duties? 

__________________________________________________________ 

 
4. The amount of sleep I received on my current watch bill was: (Check one) 

□much less than 
needed 

□less than 
needed 

□about 
right 
 

□more than 
needed 
 

□much more than needed 
 

5. The amount of sleep received by the other Sailors on this cruise seemed: (Check one) 

□much less than 
needed 

□less than 
needed 

□about 
right 

□more than 
needed 

□much more than needed 



 184 

6. How did your workload for the study period compare to your normal workload when 

deployed? (Check one) 

□much less than 
usual 

□less than 
usual 

□about the 
same 

□more than 
usual 

□much more than usual  

7. What did you like most about your current watch rotation? 

__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
_________________________________________________________________ 
 

8. What did you like least about your current watch rotation? 

__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
_________________________________________________________________ 
 

9. Were there any challenges in implementing your current watch rotation? 

__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
_________________________________________________________________ 
 

10. Is there anything else you would like to tell us (good or bad) about your current watch 

rotation? 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

_________________________________________________________________ 

 
11. What advice would you give to others who would like to improve their watchstanding 

schedules? 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

_________________________________________________________________ 

 
12. What deck is your current berthing located on? (for example 02, 1 etc.) 

______________________ 

 
13. What part of the ship is your berthing currently located? 
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□ Forward   □Amidships  □Aft 
14. How is your rack currently oriented (check one) 

□ Across the ship, port to starboard or athwart the ship 
□ Lengthwise with respect to the ship, fore and aft or abeam the ship 
 

15. What kinds of things affect your sleep on the ship? (Check all that apply) 

 Not enough time to sleep 

 Noise (_____Other Sailors  ______ Engine/equipment noise) 

 Temperature (_____too cold ____too hot) 

 Light 

 Motion 

 Bedding Conditions ____Bunk Length  ____Mattress ____Pillow ____Curtain 

 Odors ( ____engine fumes  ____human odors) 

 Other: 

__________________________________________________________________________

__________________________________________________________________________

__________________________________________________________________________

_______________________________________ 

 
Thank you for participating in the USS NIMITZ Sleep Study! 
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APPENDIX C. PITTSBURGH SLEEP QUALITY INDEX  

From Buysse, Reynolds, Monk, Berman, & Kupfer, 1989b. 
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APPENDIX D. EPWORTH SLEEPINESS SCALE  

From Johns, 1991b.  
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APPENDIX E. COMPOSITE SCALE OF MORNINGNESS  

After Smith et al., 1989. 
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APPENDIX F. DAY-TO-DAY SLEEP PLOTS 
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APPENDIX G. INDIVIDUAL PARTICIPANT ACTIGRAPHIC 
SLEEP AND SELF-REPORTED ACTIVITIES VS. THE NSWW 
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APPENDIX H. INDIVIDUAL PARTICIPANT DIFFERENCE FROM 
THE NSWW 
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APPENDIX I. INDIVIDUAL PARTICIPANT DEVIATION FROM 
THE NSWW 
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APPENDIX J. DISTRIBUTION OF PARTICIPANT TIME IN 
NSWW CATEGORIES 
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APPENDIX K. INDIVIDUAL PARTICIPANT FAST PLOTS 
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